211 resultados para GAMMA-FE2O3 NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of weak dipolar interactions (DIs) between Ni nanoparticles (NPs) in samples with different Ni concentrations was investigated by performing a detailed characterization of their structural and magnetic properties. From the determination of several physical parameters of Ni NP assemblies, it was found that the ac and dc magnetic susceptibility measurements are valuable for identifying the DIs between NPs while hysteresis loops measurements showed to be very insensitive, provided that the strength of the DI field is much smaller than the maximum coercive field. Therefore, the sensitivity of the observed static and dynamical magnetic properties to the effect of weak DI depends on the measurement protocols used. (C) 2011 American Institute of Physics. [doi:10.1063/1.3556767]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy barrier distribution E(b) of five samples with different concentrations x of Ni nanoparticles using scaling plots from ac magnetic susceptibility data has been determined. The scaling of the imaginary part of the susceptibility chi""(v, T) versus T ln (iota t/tau(0)) remains valid for all samples, which display Ni nanoparticles with similar shape and size. The mean value < E(b)> increases appreciably with increasing x, or more appropriately with increasing dipolar interactions between Ni nanoparticles. We argue that such an increase in < E(b)> constitutes a powerful tool for quality control in magnetic recording media technology where the dipolar interaction plays an important role. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3533911]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes an easy synthesis (one pot) of MFe(2)O(4) (M = Co, Fe, Mn, and Ni) magnetic nanoparticles MNPs by the thermal decomposition of Fe(Acac)(3)/M(Acac)(2) by using BMI center dot NTf(2) (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) or BMI center dot PF(6) (1-n-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids (ILs) as recycling solvents and oleylamine as the reducing and surface modifier agent. The effects of reaction temperature and reaction time on the features of the magnetic nanomaterials (size and magnetic properties) were investigated. The growth of the MNPs is easily controlled in the IL by adjusting the reaction temperature and time, as inferred from Fe(3)O(4) MNPs obtained at 150 degrees C, 200 degrees C and 250 degrees C with mean diameters of 8, 10 and 15 nm, respectively. However, the thermal decomposition of Fe(Acac)(3) performed in a conventional high boiling point solvent (diphenyl ether, bp 259 degrees C), under a similar Fe to oleylamine molar ratio used in the IL synthesis, does not follow the same growth mechanism and rendered only smaller NPs of 5 nm mean diameter. All MNPs are covered by at least one monolayer of oleylamine making them readily dispersible in non-polar solvents. Besides the influence on the nanoparticles growth, which is important for the preparation of highly crystalline MNPs, the IL was easily recycled and has been used in at least 20 successive syntheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanoparticles (NP) of magnetite (Fe(3)O(4)) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through transmission electron microscopy (TEM), magnetization M, and ac magnetic susceptibility measurements. The OA coated samples were produced with different magnetic concentrations (78%, 76%, and 65%) and the DA sample with 63% of Fe(3)O(4). Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter similar to 5.5 nm. Magnetization measurements, performed in zero-field cooled (ZFC) and field cooled processes under different external magnetic fields H, exhibited a maximum at a given temperature T(B) in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature T(B) decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase in T(B). The observed behavior is related to the dipolar interaction between NP, which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility chi(ac) measurements, where the temperature in which chi' peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H versus T(B)/T(B) (H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below T(B), M versus H curves show a coercive field (H(C)) that increases monotonically with decreasing temperature. The saturation magnetization (M(S)) follows the Bloch's law and values of M(S) at room temperature as high as 78 emu/g were estimated, a result corresponding to similar to 80% of the bulk value. The overlap of M/M(S) versus H/T curves for a given sample and the low H(C) at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/M(S) versus H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3311611]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a systematic study of the magnetic properties of a series of ferrimagnetic nanoparticles of Mg(x)Fe(3-x)O(4) (0.8 <= x <= 1.5) prepared by the combustion reaction method. The magnetization data can be well fitted by Bloch's law with T(3/2). Bloch's constant B determined from the fitting procedure was found to increase with Mg content x from similar to 3.09 X 10(-5) K(-3/2) for x = 0.8 to 6.27 X 10(-5) K(-3/2) for x=1.5. The exchange integral J(AB) and the spin-wave stiffness constant D of Mg(x)Fe(3-x)O(4) nanoparticles were also determined as similar to 0.842 and 0.574 meV and 296 and 202 meV angstrom(2) for specimens with x=0.8 and 1.5, respectively. These results are discussed in terms of cation redistribution among A and B sites on these nanostructured spinel ferrites. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359709]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of dipolar interactions among Ni nanoparticles (NPs) embedded in an amorphous SiO(2)/C matrix with different concentrations has been studied performing ac magnetic susceptibility chi(ac) measurements. For very diluted samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions, the data are well described by the Neacuteel-Arrhenius law. Increasing Ni concentration to values up to 12.8 wt % Ni results in changes in the Neacuteel-Arrhenius behavior, the dipolar interactions become important, and need to be considered to describe the magnetic response of the NPs system. We have found no evidence of a spin-glasslike behavior in our Ni NP systems even when dipolar interactions are clearly present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of slow release fertilizer has become a new trend to save fertilizer consumption and to minimize environmental pollution. Due to its polymeric cationic, biodegradable, bioabsorbable, and bactericidal characteristics, chitosan (CS) nanoparticle is an interesting material for use in controlled release systems. However, there are no attempts to explore the potential of chitosan nanoparticles as controlled release for NPK fertilizers. In this work chitosan nanoparticles were obtained by polymerizing methacrylic acid for the incorporation of NPK fertilizers. The interaction and stability of chitosan nanoparticle suspensions containing nitrogen (N), phosphorus (P) and potassium (K) were evaluated by FTIR spectroscopy, particle size analysis and zeta-potential. The FTIR results indicated the existence of electrostatic interactions between chitosan nanoparticles and the elements N, P and K. The stability of the CS-PMAA colloidal suspension was higher with the addition of nitrogen and potassium than with the addition of phosphorus, due to the higher anion charge from the calcium phosphate than the anion charges from the potassium chloride and urea. The mean diameter increase of the CS-PMAA nanoparticles in suspension with the addition of different compounds indicated that the elements are being aggregated on the surface of the chitosan nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exciting unsolved problem in the study of high energy processes of early type stars concerns the physical mechanism for producing X-rays near the Be star gamma Cassiopeiae. By now we know that this source and several ""gamma Cas analogs"" exhibit an unusual hard thermal X-ray spectrum, compared both to normal massive stars and the non-thermal emission of known Be/X-ray binaries. Also, its light curve is variable on almost all conceivable timescales. In this study we reanalyze a high dispersion spectrum obtained by Chandra in 2001 and combine it with the analysis of a new (2004) spectrum and light curve obtained by XMM-Newton. We find that both spectra can be fit well with 3-4 optically thin, thermal components consisting of a hot component having a temperature kT(Q) similar to 12-14 keV, perhaps one with a value of similar to 2.4 keV, and two with well defined values near 0.6 keV and 0.11 keV. We argue that these components arise in discrete (almost monothermal) plasmas. Moreover, they cannot be produced within an integral gas structure or by the cooling of a dominant hot process. Consistent with earlier findings, we also find that the Fe abundance arising from K-shell ions is significantly subsolar and less than the Fe abundance from L-shell ions. We also find novel properties not present in the earlier Chandra spectrum, including a dramatic decrease in the local photoelectric absorption of soft X-rays, a decrease in the strength of the Fe and possibly of the Si K fluorescence features, underpredicted lines in two ions each of Ne and N (suggesting abundances that are similar to 1.5-3x and similar to 4x solar, respectively), and broadening of the strong NeXLy alpha and OVIII Ly alpha lines. In addition, we note certain traits in the gamma Cas spectrum that are different from those of the fairly well studied analog HD110432 - in this sense the stars have different ""personalities."" In particular, for gamma Cas the hot X-ray component remains nearly constant in temperature, and the photoelectric absorption of the X-ray plasmas can change dramatically. As found by previous investigators of gamma Cas, changes in flux, whether occurring slowly or in rapidly evolving flares, are only seldomly accompanied by variations in hardness. Moreover, the light curve can show a ""periodicity"" that is due to the presence of flux minima that recur semiregularly over a few hours, and which can appear again at different epochs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a novel way to introduce gold nanoparticles (Au NPs) in a multilayer polymer produced by the layer-by-layer (LbL) assembling technique. The technique chosen shows that, depending on the pH used, different morphological structures can be obtained from monolayer or bilayer Au NPs. The MEIS and RBS techniques allowed for the modelling of the interface polymer-NPs, as well as the understanding of the interaction of LbL system, when adjusting the pH in weak polyelectrolytes. The process reveals that the optical properties of multilayer systems could be fine-tuned by controlling the addition of metallic nanoparticles, which could also modify specific polarization responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic AFM probes known as MAClevers (R) were employed for sensing picogram amounts of magnetic nanoparticles, based on the cantilever frequency shifts resulting from the magnetically induced adsorption of mass. By using organothiol functionalized magnetic nanoparticles, this analytical strategy was successfully extended to the detection of gold nanoparticles, as confirmed by confocal Raman microscopy.