85 resultados para Frontal-cortex
Resumo:
Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object by qEEG gamma-band (30-100 Hz). It is involved in cognitive processes, memory, spatial/temporal and proprioceptive factors. Our hypothesis is that an increase in gamma coherence in frontal areas will be observed during moment preceding ball drop, due to their involvement in attention, planning, selection of movements, preparation and voluntary control of action and in central areas during moment after ball drop, due to their involvement in motor preparation, perception and execution of movement. However, through a paired t-test, we found an increase in gamma coherence for F3-F4 electrode pair during moment preceding ball drop and confirmed our hypothesis for C3-C4 electrode pair. We conclude that gamma plays an important role in reflecting binding of several brain areas in a complex motor task as observed in our results. Moreover, for selection of movements, preparation and voluntary control of action, motor preparation, perception and execution of movement, the integration of somatosensory and visual information is mandatory. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The mechanisms underlying the effects of antidepressant treatment in patients with Parkinson`s disease (PD) are unclear. The neural changes after successful therapy investigated by neuroimaging methods can give insights into the mechanisms of action related to a specific treatment choice. To study the mechanisms of neural modulation of repetitive transcranial magnetic Stimulation (rTMS) and fluoxetine, 21 PD depressed patients were randomized into only two active treatment groups for 4 wk: active rTMS over left dorsolateral prefrontal cortex (DLPFC) (5 Hz rTMS; 120% motor threshold) with placebo pill and sham rTMS with fluoxetine 20mg/d. Event-related functional magnetic resonance imaging (fMRI) with emotional stimuli was performed before and after treatment - in two sessions (test and re-test) at each time-point. The two groups of treatment had a significant, similar mood improvement. After rTMS treatment, there were brain activity decreases in left fusiform gyrus, cerebellum and right DLPFC and brain activity increases in left DLPFC and anterior cingulate gyrus compared to baseline. In contrast, after fluoxetine treatment, there were brain activity increases in right premotor and right medial prefrontal cortex. There was a significant interaction effect between groups vs. time in the left medial prefrontal cortex, suggesting that the activity in this area changed differently in the two treatment groups. Our findings show that antidepressant effects of rTMS and fluoxetine in PD are associated with changes in different areas of the depression-related neural network.
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Resumo:
Objective: The few studies applying single-voxel(1)H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low N-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol / phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study was to evaluate NAA, glycerophosphocholine plus phosphocholine (GPC+PC) and PCr+Cr in various frontal cortical areas in children and adolescents with BD. We hypothesized that NAA levels within the prefrontal cortex are lower in BD patients than in healthy controls, indicating neurodevelopmental alterations in the former. Method: We studied 43 pediatric patients with DSM-IV BD (19 female, mean age 13.2 +/- 2.9 years) and 38 healthy controls (79 female, mean age 13.9 +/- 2.7 years). We conducted multivoxel in vivo (1)H spectroscopy measurements at 1.5 Tesla using a long echo time of 272 ms to obtain bilateral metabolite levels from the medial prefrontal cortex (MPFC), DLPFC (white and gray matter), cingulate (anterior and posterior), and occipital lobes. We used the nonparametric Mann-Whitney U test to compare neurochemical levels between groups. Results: In pediatric BD patients, NAA and GPC+PC levels in the bilateral MPFC, and PCr+Cr levels in the left MPFC were lower than those seen in the controls. In the left DLPFC white matter, levels of NAA and PCr+Cr were also lower in BD patients than in controls. Conclusions: Lower NAA and PCr+Cr levels in the PFC of children and adolescents with BD may be indicative of abnormal dendritic arborization and neuropil, suggesting neurodevelopmental abnormalities. J. Am. Acad. Child Adolesc. Psychiatry, 2011;50(1):85-94.
Resumo:
Background: Neuropsychological deficits have been reported in association with first-episode psychosis (FEP). Reductions in grey matter (GM) volumes have been documented in FEP subjects compared to healthy controls. However, the possible inter-relationship between the findings of those two lines of research has been scarcely investigated. Objective: To investigate the relationship between neuropsychological deficits and GM volume abnormalities in a population-based sample of FEP patients compared to healthy controls from the same geographical area. Methods: FEP patients (n = 88) and control subjects (n = 86) were evaluated by neuropsychological assessment (Controlled Oral Word Association Test, forward and backward digit span tests) and magnetic resonance imaging using voxel-based morphometry. Results: Single-group analyses showed that prefrontal and temporo-parietal GM volumes correlated significantly (p < 0.05, corrected) with cognitive performance in FEP patients. A similar pattern of direct correlations between neocortical GM volumes and cognitive impairment was seen in the schizophrenia subgroup (n = 48). In the control group, cognitive performance was directly correlated with GM volume in the right dorsal anterior cingulate cortex and inversely correlated with parahippocampal gyral volumes bilaterally. Interaction analyses with ""group status"" as a predictor variable showed significantly greater positive correlation within the left inferior prefrontal cortex (BA46) in the FEP group relative to controls, and significantly greater negative correlation within the left parahippocampal gyrus in the control group relative to FEP patients. Conclusion: Our results indicate that cognitive deficits are directly related to brain volume abnormalities in frontal and temporo-parietal cortices in FEP subjects, most specifically in inferior portions of the dorsolateral prefrontal cortex. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: The purpose of this study was to investigate regional structural abnormalities in the brains of five patients with refractory obsessive-compulsive disorder (OCD) submitted to gamma ventral capsulotomy. Methods: We acquired morphometric magnetic resonance imaging (MRI) data before and after 1 year of radiosurgery using a 1.5-T MRI scanner. Images were spatially normalized and segmented using optimized voxel-based morphometry (VBM) methods. Voxelwise statistical comparisons between pre- and post-surgery MRI scans were performed using a general linear model. Findings in regions predicted a priori to show volumetric changes (orbitofrontal cortex, anterior cingulate gyrus, basal ganglia and thalamus) were reported as significant if surpassing a statistical threshold of p<0.001 (uncorrected for multiple comparisons). Results: We detected a significant regional postoperative increase in gray matter volume in the right inferior frontal gyri (Brodmann area 47, BA47) when comparing all patients pre and postoperatively. Conclusions: Our results support the current theory of frontal-striatal-thalamic-cortical (FSTC) circuitry involvement in OCD pathogenesis. Gamma ventral capsulotomy is associated with neurobiological changes in the inferior orbitofrontal cortex in refractory OCD patients. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In addition to pain and neurovegetative symptoms, patients with severe forms of complex regional pain syndrome (CRPS) develop a broad range of symptoms, including sensory disturbances, motor impairment and dystonic posturing. While most patients respond to medical therapy, some are considered refractory and become surgical candidates. To date, the most commonly used surgical procedure for CRPS has been spinal cord stimulation. This therapy often leads to important analgesic effects, but no sensory or motor improvements. We report on 2 patients with pain related to CRPS and severe functional deficits treated with motor cortex stimulation (MCS) who not only had significant analgesic effects, but also improvements in sensory and motor symptoms. In the long term (27 and 36 months after surgery), visual analog scale pain scores were improved by 60-70% as compared to baseline. There was also a significant increase in the range of motion in the joints of the affected limbs and an improvement in allodynia, hyperpathia and hypoesthesia. Positron emission tomography scan in both subjects revealed that MCS influenced regions involved in the circuitry of pain. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120-150. Self-spotted chips containing 340 cDNAs related to the glutamate system (""glutamate chips"") were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity.
Resumo:
Objectives The subgenual prefrontal cortex (SGPFC) is an important brain region involved in emotional regulation and reward mechanisms Volumetric abnormalities in this region have been identified in adults with bipolar disorder but thus far not in pediatric cases We examined the volume of this brain region in subjects with pediatric bipolar disorder (PBD) and compared them to healthy controls Methods Fifty one children and adolescents (mean age +/- SD 13 2 +/- 2 9 y) with DSM-IV PBD and 41 (mean age +/- SD 13 7 +/- 2 7 y) healthy comparison subjects (HC) underwent 1 5 T structural magnetic resonance imaging (MRI) brain scans We traced the SGPFC manually and compared SGPFC gray matter volumes using analysis of covariance with age gender and intracranial volume as covariates We also examined the relationship of family history of affective disorders and medication status to SGPFC volumes Results SGPFC volumes were not significantly different in PBD and HC subjects However exploratory analysis showed PBD subjects who had one or more first degree relatives with mood disorders (n = 33) had significantly smaller left hemisphere SGPFC compared to HC (p = 003 Sidak corrected) Current usage of a mood stabilizer was significantly associated with larger right SGPFC volume in PBD (F = 4 82 df = 1/41 p = 0 03) Conclusion Subjects with PBD and a close family history of mood disorders may have smaller left SGPFC volumes than HC Mood stabilizing medication may also impact SGPFC size and could have masked more subtle abnormalities overall (C) 2010 Elsevier Ltd All rights reserved
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol`s effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.
Resumo:
Suicidality is a life-threatening symptom in patients with bipolar disorder (BD). Impulsivity and mood instability are associated with suicidality in mood disorders. Evidence suggests that gray and white matter abnormalities are linked with impulsivity in mood disorders, but little is known about the association between corpus callosum (CC) and impulsivity in BID. We examined the relationship between CC areas, impulsivity and suicidality in BID patients. We studied 10 female BD patients with a history of suicide attempt (mean +/- SD age 36.2 +/- 10.1 years), 10 female BD patients without suicide attempt history (44.2 +/- 12.5 years) and 27 female healthy subjects (36.9 +/- 13.8 years). Impulsivity was evaluated by the Barratt Impulsivity Scale (BIS). We traced MR images to measure the areas of the CC genu, anterior body, posterior body, isthmus and splenium. The genu was divided into anterior, middle and posterior regions. The suicidal and non-suicidal BID patients had significantly higher BIS total, attention and non-planning scores than the healthy subjects (ps < 0.01), and the suicidal BID patients had significantly higher BIS motor scores than the non-suicidal BD and healthy subjects (ps < 0.01). There were no significant differences among the three groups on any regional CC areas, although the suicidal BD patients had the smallest areas. The suicidal BD patients showed a significant inverse correlation between anterior genu area and the BIS total (r = -0.75, p = 0.04), motor (r = -0.79, p = 0.02) and non-planning scores (r = -0.79, p = 0.02). These correlations were not found in the non-suicidal BID patients or healthy subjects. The results suggest that the anterior medial frontal region may be involved in the pathophysiology of impulsive and suicidal behaviors in BD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.