120 resultados para Finite-Element


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A procedure is proposed to accurately model thin wires in lossy media by finite element analysis. It is based on the determination of a suitable element width in the vicinity of the wire, which strongly depends on the wire radius to yield accurate results. The approach is well adapted to the analysis of grounding systems. The numerical results of the application of finite element analysis with the suitably chosen element width are compared with both analytical results and those computed by a commercial package for the analysis of grounding systems, showing very good agreement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Honeycomb structures have been used in different engineering fields. In civil engineering, honeycomb fiber-reinforced polymer (FRP) structures have been used as bridge decks to rehabilitate highway bridges in the United States. In this work, a simplified finite-element modeling technique for honeycomb FRP bridge decks is presented. The motivation is the combination of the complex geometry of honeycomb FRP decks and computational limits, which may prevent modeling of these decks in detail. The results from static and modal analyses indicate that the proposed modeling technique provides a viable tool for modeling the complex geometry of honeycomb FRP bridge decks. The modeling of other bridge components (e.g., steel girders, steel guardrails, deck-to-girder connections, and pier supports) is also presented in this work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the effects of conical indentation variables on the load-depth indentation curves were analyzed using finite element modeling and dimensional analysis. A factorial design 2(6) was used with the aim of quantifying the effects of the mechanical properties of the indented material and of the indenter geometry. Analysis was based on the input variables Y/E, R/h(max), n, theta, E, and h(max). The dimensional variables E and h(max) were used such that each value of dimensionless Y/E was obtained with two different values of E and each value of dimensionless R/h(max) was obtained with two different h(max) values. A set of dimensionless functions was defined to analyze the effect of the input variables: Pi(1) = P(1)/Eh(2), Pi(2) = h(c)/h, Pi(3) = H/Y, Pi(4) = S/Eh(max), Pi(6) = h(max)/h(f) and Pi(7) = W(P)/W(T). These six functions were found to depend only on the dimensionless variables studied (Y/E, R/h(max), n, theta). Another dimension less function, Pi(5) = beta, was not well defined for most of the dimensionless variables and the only variable that provided a significant effect on beta was theta. However, beta showed a strong dependence on the fraction of the data selected to fit the unloading curve, which means that beta is especially Susceptible to the error in the Calculation of the initial unloading slope.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shot peening is a cold-working mechanical process in which a shot stream is propelled against a component surface. Its purpose is to introduce compressive residual stresses on component surfaces for increasing the fatigue resistance. This process is widely applied in springs due to the cyclical loads requirements. This paper presents a numerical modelling of shot peening process using the finite element method. The results are compared with experimental measurements of the residual stresses, obtained by the X-rays diffraction technique, in leaf springs submitted to this process. Furthermore, the results are compared with empirical and numerical correlations developed by other authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work uses crystal plasticity finite element simulations to elucidate the role of elastoplastic anisotropy in instrumented indentation P-h(s) curve measurements in face-centered Cubic (fcc) crystals. It is shown that although the experimental fluctuations in the loading stage of the P-h(s) curves can be attributed to anisotropy, the variability in the unloading stage of the experiments Is much greater than that resulting from anisotropy alone. Moreover, it is found that the conventional procedure used to evaluate the contact variables ruling the unloading P-h(s) curve introduces all uncertainty that approximates to the more fundamental influence of anisotropy. In view of these results, a robust procedure is proposed that uses contact area measurements in addition to the P-h(s) curves to extract homogenized J(2)-Plasticity-equivalent mechanical properties from single crystals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional threading operations involve two distinct machining processes: drilling and threading. Therefore, it is time consuming for the tools must be changed and the workpiece has to be moved to another machine. This paper presents an analysis of the combined process (drilling followed by threading) using a single tool for both operations: the tap-milling tool. Before presenting the methodology used to evaluate this hybrid tool, the ODS (operating deflection shapes) basics is shortly described. ODS and finite element modeling (FEM) were used during this research to optimize the process aiming to achieve higher stable machining conditions and increasing the tool life. Both methods allowed the determination of the natural frequencies and displacements of the machining center and optimize the workpiece fixture system. The results showed that there is an excellent correlation between the dynamic stability of the machining center-tool holder and the tool life, avoiding a tool premature catastrophic failure. Nevertheless, evidence showed that the tool is very sensitive to work conditions. Undoubtedly, the use of ODS and FEM eliminate empiric decisions concerning the optimization of machining conditions and increase drastically the tool life. After the ODS and FEM studies, it was possible to optimize the process and work material fixture system and machine more than 30,000 threaded holes without reaching the tool life limit and catastrophic fail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a critical analysis of methodologies to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) for structures with piezoelectric elements. First, a review of several existing methodologies to evaluate material and effective EMCC is presented. To illustrate the methodologies, a comparison is made between numerical, analytical and experimental results for two simple structures: a cantilever beam with bonded extension piezoelectric patches and a simply-supported sandwich beam with an embedded shear piezoceramic. An analysis of the electric charge cancelation effect on the effective EMCC observed in long piezoelectric patches is performed. It confirms the importance of reinforcing the electrodes equipotentiality condition in the finite element model. Its results indicate also that smaller (segmented) and independent piezoelectric patches could be more interesting for energy conversion efficiency. Then, parametric analyses and optimization are performed for a cantilever sandwich beam with several embedded shear piezoceramic patches. Results indicate that to fully benefit from the higher material coupling of shear piezoceramic patches, attention must be paid to the configuration design so that the shear strains in the patches are maximized. In particular, effective square EMCC values higher than 1% were obtained embedding nine well-spaced short piezoceramic patches in an aluminum/foam/aluminum sandwich beam.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load-time histories, displacement-time histories and energy-time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill`s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS (TM), in order to simulate the failure mechanisms under indentation tests. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.