202 resultados para FLT 1 gene
Resumo:
Aims: To evaluate the IL1RN polymorphism as a possible marker for Rheumatic Fever (RF) susceptibility or disease severity. Methods: The genotypes of 84 RF patients (Jones criteria) and 84 normal race-matched controls were determined through the analysis of the number of 86-bp tandem repeats in the second intron of IL1RN. The DNA was extracted from peripheral-blood leukocytes and amplified with specific primers. Clinical manifestations of RF were obtained through a standardized questionnaire and an extensive chart review. Carditis was defined as new onset cardiac murmur that was perceived by a trained physician with corresponding valvae regurgitation or stenosis on echocardiogram. Carditis was classified as severe in the presence of congestive heart failure or upon the indication for cardiac surgery. The statistical association among the genotypes, RF and its clinical variations was determined. Results: The presence of allele I and the genotype A1/A1 were found less frequently among patients with severe carditis when compared to patients without this manifestation (OR = 0.11, p = 0.031; OR = 0.092, p = 0.017). Neither allele I nor allele 2 were associated with the presence of RF (p = 0.188 and p = 0.106), overall carditis (p = 0.578 and p = 0.767), polyarthritis (p = 0.343 and p = 0.313) and chorea (p = 0.654 and p = 0.633). Conclusion: In the Brazilian population, the polymorphism of the IL-1ra gene is a relevant factor for rheumatic heart disease severity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions -336, -332 -201 and -139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that -336A and -139A SNPs were quite common in Asians and that the -201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the -336A variant was more frequent in HTLV-1 -infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80%; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218-5.179). In addition, the -139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95% CI=0.1954-0.7229) when the HTLV-1 -infected patients as a whole were compared with the healthy-control group. These observations suggest that the -139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs -336 and -139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.
Resumo:
The MHC region (6p21) aggregates the major genes that contribute to susceptibility to type 1 diabetes (T1D). Three additional relevant susceptibility regions mapped on chromosomes 1p13 (PTPN22), 2q33 (CTLA-4), and 11p15 (insulin) have also been described by linkage studies. To evaluate the contribution of these susceptibility regions and the chromosomes that house these regions, we performed a large-scale differential gene expression on lymphomononuclear cells of recently diagnosed T1D patients, pinpointing relevant modulated genes clustered in these regions and their respective chromosomes. A total of 4608 cDNAs from the IMAGE library were spotted onto glass slides using robotic technology. Statistical analysis was carried out using the SAM program, and data regarding gene location and biological function were obtained at the SOURCE, NCBI, and FATIGO programs. Three induced genes were observed spanning around the MHC region (6p21-6p23), and seven modulated genes (5 repressed and 2 repressed) were seen spanning around the 6q21-24 region. Additional modulated genes were observed in and around the 1p13, 2q33, and 11p15 regions. Overall, modulated genes in these regions were primarily associated with cellular metabolism, transcription factors and signaling transduction. The differential gene expression characterization may identify new genes potentially involved with diabetes pathogenesis.
Resumo:
P>Objective Congenital hypogonadotropic hypogonadism with anosmia (Kallmann syndrome) or with normal sense of smell is a heterogeneous genetic disorder caused by defects in the synthesis, secretion and action of gonadotrophin-releasing hormone (GnRH). Mutations involving autosomal genes have been identified in approximately 30% of all cases of hypogonadotropic hypogonadism. However, most studies that screened patients with hypogonadotropic hypogonadism for gene mutations did not include gene dosage methodologies. Therefore, it remains to be determined whether patients without detected point mutation carried a heterozygous deletion of one or more exons. Measurements We used the multiplex ligation-dependent probe amplification (MLPA) assay to evaluate the potential contribution of heterozygous deletions of FGFR1, GnRH1, GnRHR, GPR54 and NELF genes in the aetiology of GnRH deficiency. Patients We studied a mutation-negative cohort of 135 patients, 80 with Kallmann syndrome and 55 with normosmic hypogonadotropic hypogonadism. Results One large heterozygous deletion involving all FGFR1 exons was identified in a female patient with sporadic normosmic hypogonadotropic hypogonadism and mild dimorphisms as ogival palate and cavus foot. FGFR1 hemizygosity was confirmed by gene dosage with comparative multiplex and real-time PCRs. Conclusions FGFR1 or other autosomal gene deletion is a possible but very rare event and does not account for a significant number of sporadic or inherited cases of isolated GnRH deficiency.
Resumo:
The development of HTLV-1 associated clinical manifestations, such as TSP/HAM and ATLL, occur in 2-4% of the infected population and it is still unclear why this infection remains asymptomatic in most infected carriers. Recently, it has been demonstrated that HTLV uses the Glucose transporter type 1 (GLUT1) to infect T-CD4(+) lymphocytes and that single nucleotide polymorphisms (SNP) in the GLUT1 gene are associated with diabetic nephropathy in patients with diabetes mellitus in different populations. These polymorphisms could contribute to a higher GLUT1 protein expression on cellular membrane, facilitating the entry of HTLV and its transmission cell by cell. This could result in a higher provirus load and consequently in the development of TSP/HAM. To evaluate the role of GLUT1 gene polymorphisms in the development of TSP/HAM in HTLV-1 infected individuals, the g.22999G > T, g.15339T > C and c.-2841A > T sites were analyzed by PCR/RFLP or sequencing in 244 infected individuals and 102 normal controls. The proviral load of the HTLV-1 infected patients was also analyzed using Real Time Quantitative PCR. Genotypic and allelic frequencies of the three sites did not differ significantly between controls and HTLV-1 infected individuals. There was no difference in genotypic and allelic distributions among patients as to the presence or absence of HTLV-1 associated clinic manifestations. As regards the quantification of the provirus load, we observed a significant reduction in the asymptomatic individuals compared with the oligosymptomatic and TSP/HAM individuals. These results suggest that g.22999G > T, g.15339T > C, and c.-2841A > T SNP do not contribute to HTLV-1 infection nor to the genetic susceptibility of TSP/HAM in Brazilian HTLV-1 infected individuals. J. Med. Virol. 81:552557, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Context: Type 1 pseudohypoaldosteronism (PHA1), a primary form of mineralocorticoid resistance, isdueto inactivating mutations of the NR3C2 gene, coding for the mineralocorticoid receptor (MR). Objective: The objective of the study was to assess whether different NR3C2 mutations have distinct effects on the pattern of MR-dependent transcriptional regulation of aldosterone-regulated genes. Design and Methods: Four MR mutations affecting residues in the ligand binding domain, identified in families with PHA1, were tested. MR proteins generated by site-directed mutagenesis were analyzed for their binding to aldosterone and were transiently transfected into renal cells to explore the functional effects on the transcriptional activity of the receptors by cis-trans-cotrans-activation assays and by measuring the induction of endogenous gene transcription. Results: Binding assays showed very low or absent aldosterone binding for mutants MR(877Pro), MR(848Pro), and MR(947stop) and decreased affinity for aldosterone of MR(843Pro). Compared with wildtype MR, the mutations p.Leu843Pro and p.Leu877Pro displayed half-maximal aldosterone-dependent transactivation of reporter genes driven by mouse mammary tumor virus or glucocorticoid response element-2 dependent promoters, whereas MR(848Pro) and MR(947stop) nearly or completely lost transcriptional activity. Although MR(848Pro) and MR(947stop) were also incapable of inducing aldosterone-dependent gene expression ofendogenoussgk1, GILZ, NDRG2, and SCNN1A, MR(843Pro) retained complete transcriptional activity on sgk1 and GILZ gene expression, and MR(877Pro) negatively affected the expression of sgk1, NDRG2, and SCNN1A. Conclusions: Our data demonstrate that MR mutations differentially affect individual gene expression in a promoter-dependent manner. Investigation of differential gene expression profiles in PHA1 may allow a better understanding of the molecular substrate of phenotypic variability and to elucidate pathogenic mechanisms underlying the disease. (J Clin Endocrinol Metab 96: E519-E527, 2011)
Resumo:
The Eag1 and Eag2, voltage-dependent potassium channels, and the small-conductance calcium-activated potassium channel (Kcnn3) are highly expressed in limbic regions of the brain, where their function is still unknown. Eag1 co-localizes with tyrosine hydroxilase enzyme in the substantia nigra and ventral tegmental area. Kcnn3 deficiency leads to enhanced serotonergic and dopaminergic neurotransmission accompanied by distinct alterations in emotional behaviors. As exposure to stress is able to change the expression and function of several ion channels, suggesting that they might be involved in the consequences of stress, we aimed at investigating Eag 1, Eag2 and Kcnn3 mRNA expression in the brains of rats submitted to isolation rearing. As the long-lasting alterations in emotional and behavioral regulation after stress have been related to changes in serotonergic neurotransmission, expressions of serotonin Htr1a and Htr2a receptors in male Wistar rats` brain were also investigated. Rats were reared in isolation or in groups of five for nine weeks after weaning. Isolated and socially reared rats were tested for exploratory activity in the open field test for 5 min and brains were processed for reverse-transcription coupled to quantitative polymerase chain reaction (qRT-PCR). Isolated reared rats showed decreased exploratory activity in the open field. Compared to socially reared rats, isolated rats showed reduced Htr2a mRNA expression in the striatum and brainstem and reduced Eag2 mRNA expression in all examined regions except cerebellum. To our knowledge, this is the first work to show that isolation rearing can change Eag2 gene expression in the brain. The involvement of this channel in stress-related behaviors is discussed.
Resumo:
A clinical Klebsiella pneumoniae isolate carrying the extended-spectrum beta-lactamase gene variants bla(SHV-40), bla(TEM-116) and bla(GES-7) was recovered. Cefoxitin and ceftazidime activity was most affected by the presence of these genes and an additional resistance to trimethoprim-sulphamethoxazole was observed. The bla(GES-7) gene was found to be inserted into a class 1 integron. These results show the emergence of novel bla(TEM) and bla(SHV) genes in Brazil. Moreover, the presence of class 1 integrons suggests a great potential for dissemination of bla(GES) genes into diverse nosocomial pathogens. Indeed, the bla(GES-7) gene was originally discovered in Enterobacter cloacae in Greece and, to our knowledge, has not been reported elsewhere.
Resumo:
Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1 alpha. and HNF-3 beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12 h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1 alpha and HNF-3 beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3 beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1 alpha expression and activity to levels of non-diabetic rats, whereas HNF-3 beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1 alpha and HNF-3 beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1 alpha and HNF-3 beta activity. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The objectives of the present study were to identify the cis-elements of the promoter absolutely required for the efficient rat NHE3 gene transcription and to locate positive and negative regulatory elements in the 5R17;-flanking sequence (5R17;FS), which might modulate the gene expression in proximal tubules, and to compare this result to those reported for intestinal cell lines. We analyzed the promoter activity of different 5R17;FS segments of the rat NHE3 gene, in the OKP renal proximal tubule cell line by measuring the activity of the reporter gene luciferase. Because the segment spanning the first 157 bp of 5R17;FS was the most active it was studied in more detail by sequential deletions, point mutations, and gel shift assays. The essential elements for gene transcription are in the region -85 to -33, where we can identify consensual binding sites for Sp1 and EGR-1, which are relevant to NHE3 gene basal transcription. Although a low level of transcription is still possible when the first 25 bp of the 5R17;FS are used as promoter, efficient transcription only occurs with 44 bp of 5R17;FS. There are negative regulatory elements in the segments spanning -1196 to -889 and -467 to -152, and positive enhancers between -889 and -479 bp of 5R17;FS. Transcription factors in the OKP cell nuclear extract efficiently bound to DNA elements of rat NHE3 promoter as demonstrated by gel shift assays, suggesting a high level of similarity between transcription factors of both species, including Sp1 and EGR-1.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.
Resumo:
The genus Brycon, the largest subunit of the Bryconinae, has 42 valid species distributed from southern Mexico to the La Plata River in Argentina. Henochilus is a monotypic genus, comprising a single species (H. wheatlandii) found in the upper Rio Doce basin. In the present study, partial sequences of the mitochondrial gene 16S were obtained for fifteen species of Brycon and for Henochilus wheatlandii. The results showed that the genus Brycon is paraphyletic, since Henochilus is the sister-group of B. ferox and B. insignis. The most basal species analyzed were the trans-Andean species B. henni, B. petrosus, and B. chagrensis.