115 resultados para Converse Lyapunov theorem


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Observations in the cosmological domain are heavily dependent on the validity of the cosmic distance-duality (DD) relation, eta = D(L)(z)(1+ z)(2)/D(A)(z) = 1, an exact result required by the Etherington reciprocity theorem where D(L)(z) and D(A)(z) are, respectively, the luminosity and angular diameter distances. In the limit of very small redshifts D(A)(z) = D(L)(z) and this ratio is trivially satisfied. Measurements of Sunyaev-Zeldovich effect (SZE) and X-rays combined with the DD relation have been used to determine D(A)(z) from galaxy clusters. This combination offers the possibility of testing the validity of the DD relation, as well as determining which physical processes occur in galaxy clusters via their shapes. Aims. We use WMAP (7 years) results by fixing the conventional Lambda CDM model to verify the consistence between the validity of DD relation and different assumptions about galaxy cluster geometries usually adopted in the literature. Methods. We assume that. is a function of the redshift parametrized by two different relations: eta(z) = 1+eta(0)z, and eta(z) = 1+eta(0)z/(1+z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we consider the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical (isothermal) and spherical (non-isothermal) beta models. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. It was found that the elliptical beta model is in good agreement with the data, showing no violation of the DD relation (PDF peaked close to eta(0) = 0 at 1 sigma), while the spherical (non-isothermal) one is only marginally compatible at 3 sigma. Conclusions. The present results derived by combining the SZE and X-ray surface brightness data from galaxy clusters with the latest WMAP results (7-years) favors the elliptical geometry for galaxy clusters. It is remarkable that a local property like the geometry of galaxy clusters might be constrained by a global argument provided by the cosmic DD relation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation - dissipation theorem, predicts similar to 0.034 mu G fields over similar to 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation- dissipation theorem are not completely random, microgauss fields over regions greater than or similar to 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in less than or similar to 10(9) years in high redshift galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3487516]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we prove that the Achilles-Manaresi multiplicity sequence, like the classical Hilbert-Samuel multiplicity, is additive with respect to the exact sequence of modules. We also prove the associativity formula for his mulitplicity sequence. As a consequence, we give new proofs for two results already known. First, the Achilles-Manaresi multiplicity sequence is an invariant up to reduction, a result first proved by Ciuperca. Second, I subset of J is a reduction of (J,M) if and only if c(0)(I(p), M(p)) = c(0)(J(p), M(p)) for all p is an element of Spec(A), a result first proved by Flenner and Manaresi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a dissipative vibro-impact system called impact-pair is investigated. This system is similar to Fermi-Ulam accelerator model and consists of an oscillating one-dimensional box containing a point mass moving freely between successive inelastic collisions with the rigid walls of the box. In our numerical simulations, we observed multistable regimes, for which the corresponding basins of attraction present a quite complicated structure with smooth boundary. In addition, we characterize the system in a two-dimensional parameter space by using the largest Lyapunov exponents, identifying self-similar periodic sets. Copyright (C) 2009 Silvio L.T. de Souza et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtain the exact nonequilibrium work generating function (NEWGF) for a small system consisting of a massive Brownian particle connected to internal and external springs. The external work is provided to the system for a finite-time interval. The Jarzynski equality, obtained in this case directly from the NEWGF, is shown to be valid for the present model, in an exact way regardless of the rate of external work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we determine the local and global resilience of random graphs G(n,p) (p >> n(-1)) with respect to the property of containing a cycle of length at least (1 - alpha)n. Roughly speaking, given alpha > 0, we determine the smallest r(g) (G, alpha) with the property that almost surely every subgraph of G = G(n,p) having more than r(g) (G, alpha)vertical bar E(G)vertical bar edges contains a cycle of length at least (1 - alpha)n (global resilience). We also obtain, for alpha < 1/2, the smallest r(l) (G, alpha) such that any H subset of G having deg(H) (v) larger than r(l) (G, alpha) deg(G) (v) for all v is an element of V(G) contains a cycle of length at least (1 - alpha)n (local resilience). The results above are in fact proved in the more general setting of pseudorandom graphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a polling model with multiple stations, each with Poisson arrivals and a queue of infinite capacity. The service regime is exhaustive and there is Jacksonian feedback of served customers. What is new here is that when the server comes to a station it chooses the service rate and the feedback parameters at random; these remain valid during the whole stay of the server at that station. We give criteria for recurrence, transience and existence of the sth moment of the return time to the empty state for this model. This paper generalizes the model, when only two stations accept arriving jobs, which was considered in [Ann. Appl. Probab. 17 (2007) 1447-1473]. Our results are stated in terms of Lyapunov exponents for random matrices. From the recurrence criteria it can be seen that the polling model with parameter regeneration can exhibit the unusual phenomenon of null recurrence over a thick region of parameter space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that for any a-mixing stationary process the hitting time of any n-string A(n) converges, when suitably normalized, to an exponential law. We identify the normalization constant lambda(A(n)). A similar statement holds also for the return time. To establish this result we prove two other results of independent interest. First, we show a relation between the rescaled hitting time and the rescaled return time, generalizing a theorem of Haydn, Lacroix and Vaienti. Second, we show that for positive entropy systems, the probability of observing any n-string in n consecutive observations goes to zero as n goes to infinity. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the Jacobson's Coordinatization theorem to Jordan superalgebras. Using it we classify Jordan bimodules over superalgebras of types Q(n) and JP(n), n >= 3. Then we use the Tits-Kantor-Koecher construction and representation theory of Lie superalgebras to treat the remaining case Q(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper is two-fold: firstly, we develop a local and global (in time) well-posedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrodinger-Benjamin-Ono system) for low-regularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling waves for the Schrodinger-Benjamin-Ono system is given: by fixing a minimal period we obtain, via the implicit function theorem, a smooth branch of periodic solutions bifurcating a Jacobian elliptic function called dnoidal, and, moreover, we prove that all these periodic traveling waves are nonlinearly stable by perturbations with the same wavelength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.