106 resultados para Concrete–polymer composite materials
Resumo:
The research presented here employs solid-state actuators for flow separation delay or for forced attachment of separated flow seen in airfoils at low Reynolds numbers. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by Macro-Fiber Composite actuated clamped-free unimorph benders. An electromechanical model of the unimorph is briefly presented and parametric study is conducted to aid the design of a unimorph to output high deformation at a desired frequency. The optimum frequency and amplitude for lift improvement at post-stall angles are identified experimentally. Along with aerodynamic force and structural displacement measurements, helium bubble flow visualization is used to verify existing separated flow, and the attached flow induced by flow control. The lift enhancement induced by several flow control techniques is compared. A symmetric and non-uniform (3D) flow excitation results in the maximum lift enhancement at post-stall region at the lowest power consumption level. A maximum lift coefficient increase of 27.5% (in the post-stall region) is achieved at 125 Hz periodic excitation, with the 3D symmetric actuation mode at 5 m/s and the reduced frequency of 3.78. C(l,max) is increased 7.6% from the baseline.
Exploring the potential of functionally graded materials concept for the development of fiber cement
Resumo:
In this study we establish the concept of functionally graded fiber cement. We discuss the use of statistical mixture designs to choose formulations and present ideas for the production of functionally graded fiber cement components for Hatschek machines. The feasibility of producing functionally graded fiber cement by grading PVA fiber content has been experimentally evaluated. Thermogravimetric analysis (TG) was employed to assess fiber distribution profiles and four-point bending tests were applied to evaluate the mechanical performance of both conventional and graded composites. The results show that grading PVA fiber content is an effective way to produce functionally graded fiber cement, which allows for a reduction of the total fiber volume without a significant reduction on modulus of rupture of composite. TG tests were found adequate to assess the fiber content at different points in functionally graded fiber cements. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
Adsorbent materials and composites are quite useful for sensor development. Therefore, the aim of this work is the surface modification of particulates and/or composite formation. The material was produced by plasma polymerization of HMDS (hexamethyldisilazane) in a single step. SEM analysis shows good surface coverage of particulates with a plasma polymerized film formed by several clusters that might increase adsorption. Particles (starch. 5 5 mu m) recovered with HMDS films show good properties for retention of medium-size Organic molecules, such as dye. Thin films formed by a mixture of particles and plasma polymerized thin film HMDS species were obtained in a single step and can be used for retention of organic compounds, in liquid or gaseous phase. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we report the synthesis, characterization and catalytic properties of a vanadium oxide-silicon oxide composite xerogel prepared by a soft chemistry approach. In order to obtain such material, we submitted a vanadium pentoxide gel previously synthesized via protonation of metavanadate species to an ""in situ"" progressive polycondensation into silica gel. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Further, the catalytic activity of this material was evaluated for the epoxidation of styrene and cyclooctene using iodosylbenzene, hydrogen peroxide and m-chloroperbenzoic acid as the oxidizing agent.
Resumo:
This in vitro research verified the possibility of eliminating staining caused by coffee and red wine in five composite resins, after being submitted to thermal cycling. Thirty-six specimens were prepared and immersed in water at 37 degrees C for 24 hours. After polishing, specimen color was measured in a spectrophotometer Cintra 10 UV (Visible Spectrometer, GBC, Braeside, VIC, Australia). All specimens were submitted to thermal cycling at temperatures of 5 and 55 degrees C with a dwell time of 1 minute, for 1,000 cycles in a 75% ethanol/water solution. After thermal cycling, the specimens were immersed in water at 37 degrees C until 7 days had elapsed from the time the specimens were prepared. All specimens were then taken to the spectrophotometer for color measurement. The specimens were divided into three groups (N = 12): distilled water (control), coffee, and red wine. For the staining process to occur on only one surface, all the sides, except one, of the surfaces were isolated with white wax. The specimens were immersed in one of the solutions at 37 degrees C for 14 days. The specimens were dried and taken to the spectrophotometer for color measurement. After this, the specimens were submitted to 20 mu m wear three times, and the color was measured after each one of the wear procedures. Calculation of the color difference was made using CIEDE2000 formula. According to the methodology used in this research, it was concluded that the staining caused by coffee and red wine was superficial and one wear of 20 mu m was sufficient to remove the discoloration.
Resumo:
The objective of this study was to evaluate in vitro light activation of the nano-filled resin composite Vita shade A1 and A3 with a halogen lamp (QTH) and argon ion laser by Knoop microhardness profile. Materials and methods: Specimens of nanofilled composite resin (Z350-3 M-ESPE) Vita shade A1 and A3 were prepared with a single increment inserted in 2.0-mm-thick and 3-mm diameter disc-shaped Teflon mold. The light activation was performed with QTH for 20 s (with an intensity of approximately 1,000 mW/cm(2) and 700 mW/cm(2)) and argon ion laser for 10 s (with a power of 150 mW and 200 mW). Knoop microhardness test was performed after 24 h and 6 months. The specimens were divided into the 16 experimental groups (n = 10), according to the factors under study: photoactivation form, resin shade, and storage time. Knoop microhardness data was analyzed by a factorial ANOVA and TukeyA ` s tests at the 0.05 level of significance. Results: Argon ion laser was not able to photo-activate the darker shade of the nanofilled resin composite evaluated but when used with 200 mW it can be as effective as QTH to photo-activate the lighter shade with only 50% of the time exposure. After 6 months storage, an increase in the means of Knoop microhardness values were observed. Conclusions: Light-activation significantly influenced the Knoop microhardness values for the darker nanofilled resin composite.
Resumo:
Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.
Resumo:
Purpose: The objective of this in vitro study was to compare the degree of microleakage of composite restorations performed by lasers and conventional drills associated with two adhesive systems. Materials and Methods: Sixty bovine teeth were divided into 6 groups (n = 10). The preparations were performed in groups 1 and 2 with a high-speed drill (HID), in groups 3 and 5 with Er:YAG laser, and in groups 4 and 6 with Er,Cr:YSGG laser. The specimens were restored with resin composite associated with an etch-and-rinse two-step adhesive system (Single Bond 2 [SB]) (groups 1, 3, 4) and a self-etching adhesive (One-Up Bond F [OB]) (groups 2, 5, 6). After storage, the specimens were polished, thermocycled, immersed in 50% silver nitrate tracer solution, and then sectioned longitudinally. The specimens were placed under a stereomicroscope (25X) and digital images were obtained. These were evaluated by three blinded evaluators who assigned a microleakage score (0 to 3). The original data were submitted to Kruskal-Wallis and Mann-Whitney statistical tests. Results: The occlusal/enamel margins demonstrated no differences in microleakage for all treatments (p > 0.05). The gingival/dentin margins presented similar microleakage in cavities prepared with Er:YAG, Er,Cr:YSGG, and HD using the etch-and-rinse two-step adhesive system (SB) (p > 0.05); otherwise, both Er:YAG and Er,Cr:YSGG lasers demonstrated lower microleakage scores with OB than SB adhesive (p < 0.05). Conclusion: The microleakage score at gingival margins is dependent on the interaction of the hard tissue removal tool and the adhesive system used. The self-etching adhesive system had a lower microleakage score at dentin margins for cavities prepared with Er:YAG and Er,Cr:YSGG than the etch-and-rinse two-step adhesive system.
Resumo:
This in vitro study compared the effects of a gold alloy (Degulor M), four dental ceramics (IPS Empress, IPS Empress 2, Duceram Plus, Duceram. LFC) and a laboratory-processed composite (Targis) on the wear of human enamel. The amount of wear of the enamel (dental cusps) and restorative materials (disks) were tested in water at 37 degrees C under standard load (20 N), with a chewing rate of 1.3 Hz and was determined after 150,000 and 300,000 cycles. Before the test, the average surface roughness of the restorative materials was analyzed using the Ra parameter. The results of this study indicate that Targis caused enamel wear similar to Degulor M and resulted in significantly less wear than all the ceramics tested. IPS Empress provoked the greatest amount of enamel wear and Degulor M caused less vertical dimension loss. Targis could be an appropriate alternative material to ceramic, because it is esthetic and produces opposing enamel wear comparable to gold alloy.
Resumo:
Objectives. This study evaluated the effect of composite pre-polymerization temperature and energy density on the marginal adaptation (MA), degree of conversion (DC), flexural strength (FS), and polymer cross-linking (PCL) of a resin composite (Filtek Z350, 3M/ESPE). Methods. For MA, class V cavities (4mmx2mmx2mm) were prepared in 40 bovine incisors. The adhesive system Adper Single Bond 2 (3M/ESPE) was applied. Before being placed in the cavities, the resin composite was either kept at room-temperature (25 degrees C) or previously pre-heated to 68 degrees C in the Calset (TM) device (AdDent Inc., Danbury, CT, USA). The composite was then light polymerized for 20 or 40s at 600mW/cm(2) (12 or 24 J/cm(2), respectively). The percentage of gaps was analyzed by scanning electron microscopy, after sectioning the restorations and preparing epoxy resin replicas. DC (n = 3) was obtained by FT-Raman spectroscopy on irradiated and non-irradiated composite surfaces. FS (n = 10) was measured by the three-point-bending test. KHN (n = 6) was measured after 24h dry storage and again after immersion in 100% ethanol solution for 24 h, to calculate PCL density. Data were analyzed by appropriate statistical analyses. Results. The pre-heated composite showed better MA than the room-temperature groups. A higher number of gaps were observed in the room-temperature groups, irrespective of the energy density, mainly in the axial wall (p < 0.05). Composite pre-heating and energy density did not affect the DC, FS and PCL (p > 0.05). Significance. Pre-heating the composite prior to light polymerization similar in a clinical situation did not alter the mechanical properties and monomer conversion of the composite, but provided enhanced composite adaptation to cavity walls. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Our objective was to compare the polymerization stress (sigma(pol)) of a series of composites obtained using poly(methyl methacrylate) (PMMA) or glass as bonding substrates, and to compare the results with those from in vitro microleakage of composite restorations. The tested hypothesis was that stress values obtained in a less rigid testing system (i.e. using PMMA) would show a better relationship with microleakage data. Five dental composites were tested: Filtek Z250 (FZ), Z100 (Z1), Concept (CO), Durafill (DU) and Heliomolar (HM). sigma(pol) was determined in 1 mm high specimens inserted between two rods (empty set = 5 mm) of either PMMA or glass. The composite elastic modulus (E) was obtained by three-point bending. sigma(pol) and E data were submitted to a one-way analysis of variance/Tukey test (alpha = 0.05). For the microleakage test (MI), bovine incisors received cylindrical cavities (empty set = 5 mm, h = 2 mm), which were restored in bulk. After storage for 24 h in water, specimens were subjected to dye penetration using AgNO(3) as tracer. Specimens were sectioned twice, perpendicularly, and microleakage was measured (in millimeters) under 20x magnification. Data from MI were submitted to the Kruskal-Wallis test. Means (SD) of sigma(pol) (MPa) using glass/PMMA were FZ: 7.5(1.8)(A)/2.5(0.2)(bc); Z1: 7.3(0.5)(A)/2.8(0.3)(ab); CO: 6.8(1.1)(A)/3.2(0.5)(a); DU: 4.5(0.7)(B)/2.0(0.2)(bc); HM: 3.5(0.2)(B)/2.3(0.3)(c). sigma(pol) obtained using PMMA rods were 34-67% lower than with glass. Means (SD) for tooth average/tooth maximum microleakage were FZ: 0.92(0.19)(B)/1.53(0.30)(a); Z1: 1.19(0.21)(A)/1.75(0.20)(a); CO: 1.26(0.25)(A)/1.78(0.24)(a); DU: 0.83(0.30)(B)/1.68(0.46)(a): HM: 0.81(0.27)(B)/1.64(0.54)(a). The tested hypothesis was confirmed, as the composites showed the same ordering both in the polymerization stress test using PMMA rods and in the microleakage test. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the effect of light guide distance and the different photoactivation methods on the degree of conversion (DC) and microleakage of a composite. Methods and Materials: Three photoactivation protocols (600mW/cm(2) x 40 seconds; 400 mW/cm(2) x 60 seconds or 200 mW/cm(2) x 20 seconds, followed by 500 mW/cm(2) X 40 seconds) and three distances from the light source (0, 3 or 7 mm) were tested. Cylindrical specimens (5 nun diameter; 2 mm tall; n=3) were prepared for the DC test (FT-Raman). Class V cavities were made in 90 bovine incisors to conduct the microleakage test. The specimens were conditioned for 15 seconds with phosphoric acid (37%), followed by application of the adhesive system Prime & Bond NT (Dentsply/Caulk). The preparations were restored in bulk. The specimens were stored for 24 hours in distilled water (37 degrees C) before being submitted to the silvernitrate microleakage protocol. The restorations were sectioned and analyzed under 25x magnification. Results: Statistical analyses (two-way ANOVAs and Tukey test, alpha=0.05) found significance only for the factor distance (p=0.015) at the top of the composite for the DC test. Conversion was statistically lower for the 7 mm groups compared to the 0 and 3 mm groups, which were equivalent to each other. At the bottom of the specimens, none of the factors or interactions was significant (p<0.05). The Kruskal-Wallis test showed that, in general, the soft-start method led to lower microleakage scores when compared to the continuous modes, mainly when associated with a distancing of 7 mm (p<0.01). With the exception of specimens irradiated with 400mW/cm(2) that did not demonstrate variations on scores for the distances tested, higher microleakage was observed for shorter distances from the light source. Conclusions: Soft-start methods may reduce microleakage when the light guide distancing provides a low level of irradiance, which also causes a discrete reduction in the DC.