71 resultados para Compact Difference Approximation
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.
Resumo:
In this paper, we report the remarkable agreement of the glass forming ability of binary alloys with a new criterion that combines the topological instability parameter (lambda) and the average electronegativity difference among the elements of an alloy, assuming both exert a synergetic effect. The best glass forming compositions for Zr-Cu and Ti-Ni systems are well predicted by this new approach. Although the new criterion needs further refinement, it is concluded that the proposed approach is a promising and simple tool to guide and reduce the tedious and labour intensive work to find good glass former compositions in metallic systems. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This paper deals with the calculation of the discrete approximation to the full spectrum for the tangent operator for the stability problem of the symmetric flow past a circular cylinder. It is also concerned with the localization of the Hopf bifurcation in laminar flow past a cylinder, when the stationary solution loses stability and often becomes periodic in time. The main problem is to determine the critical Reynolds number for which a pair of eigenvalues crosses the imaginary axis. We thus present a divergence-free method, based on a decoupling of the vector of velocities in the saddle-point system from the vector of pressures, allowing the computation of eigenvalues, from which we can deduce the fundamental frequency of the time-periodic solution. The calculation showed that stability is lost through a symmetry-breaking Hopf bifurcation and that the critical Reynolds number is in agreement with the value presented in reported computations. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The integration of optical detection methods in continuous flow microsystems can highly extend their range of application, as long as some negative effects derived from their scaling down can be minimized. Downsizing affects to a greater extent the sensitivity of systems based on absorbance measurements than the sensitivity of those based on emission ones. However, a careful design of the instrumental setup is needed to maintain the analytical features in both cases. In this work, we present the construction and evaluation of a simple miniaturized optical system, which integrates a novel flow cell configuration to carry out chemiluminescence (CL) measurements using a simple photodiode. It consists of a micro-mixer based on a vortex structure, which has been constructed by means of the low-temperature cofired ceramics (LTCC) technology. This mixer not only efficiently promotes the CL reaction due to the generated high turbulence but also allows the detection to be carried out in the same area, avoiding intensity signal losses. As a demonstration, a flow injection system has been designed and optimized for the detection of cobalt(H) in water samples. It shows a linear response between 2 and 20 mu M with a correlation of r > 0.993, a limit of detection of 1.1 mu M, a repeatability of RSD = 12.4 %, and an analysis time of 17 s. These results demonstrate the suitability of the proposal to the determination of compounds involved in CL reactions by means of an easily constructed versatile device based on low-cost instrumentation.
Resumo:
Higher order (2,4) FDTD schemes used for numerical solutions of Maxwell`s equations are focused on diminishing the truncation errors caused by the Taylor series expansion of the spatial derivatives. These schemes use a larger computational stencil, which generally makes use of the two constant coefficients, C-1 and C-2, for the four-point central-difference operators. In this paper we propose a novel way to diminish these truncation errors, in order to obtain more accurate numerical solutions of Maxwell`s equations. For such purpose, we present a method to individually optimize the pair of coefficients, C-1 and C-2, based on any desired grid size resolution and size of time step. Particularly, we are interested in using coarser grid discretizations to be able to simulate electrically large domains. The results of our optimization algorithm show a significant reduction in dispersion error and numerical anisotropy for all modeled grid size resolutions. Numerical simulations of free-space propagation verifies the very promising theoretical results. The model is also shown to perform well in more complex, realistic scenarios.
Resumo:
Although the formulation of the nonlinear theory of H(infinity) control has been well developed, solving the Hamilton-Jacobi-Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H(infinity) control via output feedback are presented. An example is presented illustrating the application of the algorithm.
Resumo:
We derive an analytic expression for the matric flux potential (M) for van Genuchten-Mualem (VGM) type soils which can also be written in terms of a converging infinite series. Considering the first four terms of this series, the accuracy of the approximation was verified by comparing it to values of M estimated by numerical finite difference integration. Using values of the parameters for three soils from different texture classes, the proposed four-term approximation showed an almost perfect match with the numerical solution, except for effective saturations higher than 0.9. Including more terms reduced the discrepancy but also increased the complexity of the equation. The four-term equation can be used for most applications. Cases with special interest in nearly saturated soils should include more terms from the infinite series. A transpiration reduction function for use with the VGM equations is derived by combining the derived expression for M with a root water extraction model. The shape of the resulting reduction function and its dependency on the derivative of the soil hydraulic diffusivity D with respect to the soil water content theta is discussed. Positive and negative values of dD/d theta yield concave and convex or S-shaped reduction functions, respectively. On the basis of three data sets, the hydraulic properties of virtually all soils yield concave reduction curves. Such curves based solely on soil hydraulic properties do not account for the complex interactions between shoot growth, root growth, and water availability.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
Resumo:
Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic`s homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: CD8+ T cells and natural killer (NK) cells are involved in the immune response against some pathogens. For this purpose, we investigated the in situ paracoccidioidomycosis (PCM) immune response addressing the participation of NK cells, CD8+ T cells, perforin and granzyme B expression. Methods: Sixty biopsies of PCM skin and mucosa were classified according to the presence of compact granulomas (G1), poorly organized granulomas (G2) and both kinds in the same lesion (G3). CD8+ T cells, NK cells, perforin and granzyme B were showed by immunohistochemistry. Results: CD8+ T cells were increased over NK cells in cutaneous G1 and G2 lesions. There was no difference regarding such cells in G3 lesions, although they were abundant in such lesions. In mucosa, CD8+ T cells were increased in number over NK cells in all groups. Granzyme B in skin increased in G2 and G3. The number of granzyme did not differ in mucosal lesions in the three groups. Conclusions: CD8+ T cells and NK cells play a role in PCM cutaneous and mucosal lesions. The predominance of CD8+ T cells over NK cells may represent an effective response against the fungi. Moreover, the high number of granzyme B expressing cells corroborates this possibility.
Resumo:
Purpose: Inorganic apparent strong ion difference (SIDai) improves chloride-associated acidosis recognition in dysnatremic patients. We investigated whether the difference between sodium and chloride (Na+-C1-) or the ratio between chloride and sodium (Cl-/Na+) could be used as SIDai surrogates in mixed and dysnatremic patients. Patients and Methods: Two arterial blood samples were collected from 128 patients. Physicochemical analytical approach was used. Correlation, agreement, accuracy, sensitivity, and specificity were measured to examine whether Na(+)-C1(-) and CI(-)/Na(+) could be used instead of SIDai in the diagnosis of acidosis. Results: Na(+)-C1(-) and CF/Na+ were well correlated with SIDai (R = 0.987, P < 0.001 and R = 0.959, P < 0.001, respectively). Bias between Na(+)-C1(-) and SIDai was high (6.384 with a limit of agreement of 4.4638.305 mEq/L). Accuracy values for the identification of SIDai acidosis (<38.9 mEq/L) were 0.989 (95% confidence interval [CI], 0.980-0.998) for Na+-C1- and 0.974 (95% CI, 0.959-0.989) for Cr/Na+. Receiver operator characteristic curve showed that values revealing SIDai acidosis were less than 32.5 mEq/L for Nata- and more than 0.764 for C17Na+ with sensitivities of 94.0% and 92.0% and specificities of 97.0% and 90.0%, respectively. Nata- was a reliable S IDai surrogate in dysnatremic patients. Conclusions: Nata- and CI-/Na+ are good tools to disclose S IDai acidosis. In patients with dysnatremia, Nata- is an accurate tool to diagnose SIDai acidosis. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Purpose: We examined the development of urological abnormalities in a group of pediatric renal transplant recipients. Materials and Methods: We reviewed 211 patients younger than 19 years who underwent 226 renal transplants. Three groups of patients were studied-136 children with end stage renal disease due to a nonurological cause (group 1), 56 children with a urological disorder but with an adequate bladder (group 2a) and 19 children with lower urinary tract dysfunction and/or inadequate bladder drainage (group 2b). A total of 15 children in group 2b underwent bladder augmentation (ureterocystoplasty in 6, enterocystoplasty in 9), 2 underwent continent urinary diversion, 1 underwent autoaugmentation and 1 underwent a Mitrofanoff procedure at the bladder for easier drainage. Kidney transplantation was performed in the classic manner by extraperitoneal access, and whenever possible the ureter was reimplanted using an antireflux procedure. Results: At a mean followup of 75 months 13 children had died, 59 grafts were lost and 15 children had received a second transplant. Two patients in group 2a required a complementary urological procedure to preserve renal function (1 enterocystoplasty, 1 vesicostomy). A total of 12 major surgical complications occurred in 226 kidney transplants (5.3%), with a similar incidence in all groups. The overall graft survival at 5 years was 75%, 74% and 84%, respectively, in groups 1, 2a and 2b. Conclusions: With individualized treatment children with severely inferior lower urinary tract function may undergo renal transplantation with a safe and adequate outcome.
Resumo:
In highly eusocial insects, such as the honey bee, Apis mellifera, the reproductive bias has become embedded in morphological caste differences. These are most expressively denoted in ovary size, with adult queens having large ovaries consisting of 150-200 ovarioles each, while workers typically have only 1-20 ovarioles per ovary. This morphological differentiation is a result of hormonal signals triggered by the diet change in the third larval instar, which eventually generate caste-specific gene expression patterns. To reveal these we produced differential gene expression libraries by Representational Difference Analysis (RDA) for queen and worker ovaries in a developmental stage when cell death is a prominent feature in the ovarioles of workers, whereas all ovarioles are maintained and extend in length in queens. In the queen library, 48% of the gene set represented homologs of known Drosophila genes, whereas in the worker ovary, the largest set (59%) were ESTs evidencing novel genes, not even computationally predicted in the honey bee genome. Differential expression was confirmed by quantitative RT-PCR for a selected gene set, denoting major differences for two queen and two worker library genes. These included two unpredicted genes located in chromosome 11 (Group11.35 and Group11.31, respectively) possibly representing long non-coding RNAs. Being candidates as modulators of ovary development, their expression and functional analysis should be a focal point for future studies. (C) 2011 Elsevier Ltd. All rights reserved.