47 resultados para Chagas Disease
Resumo:
Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas` disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 mu g/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7.6-fold), heart (3-fold) and small intestine (3.6-fold). Moreover, an intense inflammatory response and increment of CD4(+) T cells (1.7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4(+)CD25(+)FoxP3(+) T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas` disease.
Resumo:
Components of the DNA mismatch repair (MMR) pathway are major players in processes known to generate genetic diversity, such as mutagenesis and DNA recombination. Trypanosoma cruzi, the protozoan parasite that causes Chagas disease has a highly heterogeneous population, composed of a pool of strains with distinct characteristics. Studies with a number of molecular markers identified up to six groups in the T. cruzi population, which showed distinct levels of genetic variability. To investigate the molecular basis for such differences, we analyzed the T. cruzi MSH2 gene, which encodes a key component of MMR, and showed the existence of distinct isoforms of this protein. Here we compared cell survival rates after exposure to genotoxic agents and levels of oxidative stress-induced DNA in different parasite strains. Analyses of msh2 mutants in both T. cruzi and T. brucei were also used to investigate the role of Tcmsh2 in the response to various DNA damaging agents. The results suggest that the distinct MSH2 isoforms have differences in their activity. More importantly, they also indicate that, in addition to its role in MMR, TcMSH2 acts in the parasite response to oxidative stress through a novel mitochondrial function that may be conserved in T. brucei. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Trypanosoma cruzi is highly diverse genetically and has been partitioned into six discrete typing units (DTUs), recently re-named T. cruzi I-VI. Although T. cruzi reproduces predominantly by binary division, accumulating evidence indicates that particular DTUs are the result of hybridization events. Two major scenarios for the origin of the hybrid lineages have been proposed. It is accepted widely that the most heterozygous TcV and TcVI DTUs are the result of genetic exchange between TcII and TcIII strains. On the other hand, the participation of a TcI parental in the current genome structure of these hybrid strains is a matter of debate. Here, sequences of the T. cruzi-specific 195-bp satellite DNA of TcI, TcII, Tat, TcV, and TcVI strains have been used for inferring network genealogies. The resulting genealogy showed a high degree of reticulation, which is consistent with more than one event of hybridization between the Tc DTUs. The data also strongly suggest that Tat is a hybrid with two distinct sets of satellite sequences, and that genetic exchange between TcI and TcII parentals occurred within the pedigree of the TcV and TcVI DTUs. Although satellite DNAs belong to the fast-evolving portion of eukaryotic genomes, in >100 satellite units of nine T. cruzi strains we found regions that display 100% identity. No DTU-specific consensus motifs were identified, inferring species-wide conservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical impedance spectroscopy (EIS) in pH 6.9 phosphate buffer solution was used to investigate each step of the procedure employed to modify a screen-printed electrode (SPE). The SPE was modified with self-assembled monolayers (SAMs) of cystamine (CYS, deposited from 20 mM solution), followed by glutaraldehyde (GA, 0.3 M solution). The Trypanosoma cruzi antigen was immobilized using different deposition times. The influence of incubation time (2-18 h) of protein was also investigated. The topography of modified electrode with this protein was investigated by atomic force microscopy (AFM). Interpretation of impedance data was based on physical and chemical adsorption, and degradation of the layer at high and meddle frequencies, and charge transfer reaction involving mainly the reduction of oxygen at low frequencies. EIS studies on modified electrodes with Tc85 protein immobilized for different incubation times indicated that the optimum incubation time was 6-8 h. It was demonstrated that EIS is a good technique to evaluate the different steps and the integrity of the surface modifications, and to optimize the incubation time of protein in the development of biosensors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chagas disease is nowadays the most serious parasitic health problem. This disease is caused by Trypanosoma cruzi. The great number of deaths and the insufficient effectiveness of drugs against this parasite have alarmed the scientific community worldwide. In an attempt to overcome this problem, a model for the design and prediction of new antitrypanosomal agents was obtained. This used a mixed approach, containing simple descriptors based on fragments and topological substructural molecular design descriptors. A data set was made up of 188 compounds, 99 of them characterized an antitrypanosomal activity and 88 compounds that belong to other pharmaceutical categories. The model showed sensitivity, specificity and accuracy values above 85%. Quantitative fragmental contributions were also calculated. Then, and to confirm the quality of the model, 15 structures of molecules tested as antitrypanosomal compounds (that we did not include in this study) were predicted, taking into account the information on the abovementioned calculated fragmental contributions. The model showed an accuracy of 100% which means that the ""in silico"" methodology developed by our team is promising for the rational design of new antitrypanosomal drugs. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 882-894. 2010
Resumo:
The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3 ``-methylbut-2 ``-enyl)-2-(4`-methylpent-3`-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC50 of 2.82 mu M. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease.
Resumo:
This study describes the antichagasic potential of five compounds isolated from leaves of Piper crassinervium (Piperaceae). Two prenylated benzoic acid derivatives, one prenylated hydroquinone and two flavanones, were evaluated. The in vitro trypanocidal activity was determined against epimastigote forms of Trypanosoma cruzi (Y strain), the etiologic agent of Chagas disease. The most active compound was the prenylated hydroquinone [1,4-dihydroxy-2-(3(0),7(0)-dimethyl-1(0)-oxo-2(0)-E,6(0)-octadienyl)benzene] with an IC(50) value of 6.10 g mL(-1), which was in the same order of activity if compared with the positive control benznidazole (IC(50) = 1.60 mu g mL(-1)). This is the first report of trypanocidal activity for prenylated hydroquinone and benzoic acid derivatives.
Resumo:
In the present investigation, we have evaluated the antileishmanial and antitrypanosomal activity of methanolic crude extracts obtained from eight species of cnidarians and of a modified steroid isolated from the octocoral Carijoa riisei. The antileishmanial activity of cnidarians crude extracts showed 50% inhibitory concentration ( IC50) values in the concentration range between 2.8 and 93.3 mu g/mL. Trypomastigotes of Trypanosoma cruzi were less susceptible to the crude extracts, with IC50 values in the concentration range between 40.9 and 117.9 mu g/mL. The steroid (18-acetoxipregna-1,4,20-trien-3-one) displayed a strong antileishmanial activity, with an IC50 value of 5.5 mu g/mL against promastigotes and 16.88 mu g/mL against intracellular amastigotes. The steroid also displayed mammalian cytotoxicity (IC50 of 10.6 mu g/mL), but no hemolytic activity was observed at the highest concentration of 12.5 mu g/mL. The antileishmanial effect of the steroid in macrophages suggested other mechanism than macrophage activation, as no upregulation of nitric oxide was observed. The antitrypanosomal activity of the steroid resulted in an IC50 value of 50.5 mu g/mL. These results indicate the potential of cnidarian natural compounds as antileishmanial drug candidates.
Resumo:
A myriad of methods are available for virtual screening of small organic compound databases. In this study we have successfully applied a quantitative model of consensus measurements, using a combination of 3D similarity searches (ROCS and EON), Hologram Quantitative Structure Activity Relationships (HQSAR) and docking (FRED, FlexX, Glide and AutoDock Vina), to retrieve cruzain inhibitors from collected databases. All methods were assessed individually and then combined in a Ligand-Based Virtual Screening (LBVS) and Target-Based Virtual Screening (TBVS) consensus scoring, using Receiving Operating Characteristic (ROC) curves to evaluate their performance. Three consensus strategies were used: scaled-rank-by-number, rank-by-rank and rank-by-vote, with the most thriving the scaled-rank-by-number strategy, considering that the stiff ROC curve appeared to be satisfactory in every way to indicate a higher enrichment power at early retrieval of active compounds from the database. The ligand-based method provided access to a robust and predictive HQSAR model that was developed to show superior discrimination between active and inactive compounds, which was also better than ROCS and EON procedures. Overall, the integration of fast computational techniques based on ligand and target structures resulted in a more efficient retrieval of cruzain inhibitors with desired pharmacological profiles that may be useful to advance the discovery of new trypanocidal agents.
Resumo:
The ruthenium complex,trans-[Ru(Bz)(NH3)(4)SO2](CF3SO3)(2) 1, Bz = benznidazole (N-benzyl-2-(2-nitro-1H-imidazol-1-yl)acetamide), is more hydrosoluble and more active (IC50try/1 h = 79 +/- 3 mu M) than free benznidazole 2 (IC50try/1 h > 1 mM). 1 also exhibits low acute toxicity in vitro (IC50macrophages > 1 mM) and in vivo (400 mu mol/kg < LD50 < 600 mu mol/kg) and the formation of hydroxylamine is more favorable in 1 than in 2 by 9.6 kcal/mol. In murine acute models of Chagas` disease, 1 was more active than 2 even when only one dose was administrated. Moreover, 1 at a thousand-fold smaller concentration than the considered optimal dose for 2 (385 mu mol/kg/day = 100 mg/kg/day), proved to be sufficient to protect all infected mice, eliminating the amastigotes in their hearts and skeletal muscles as observed in H&E micrographics.
Resumo:
Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352 +/- 21 and 272 +/- 25 mu M, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1 degrees C and pH 8.6. Above 37 degrees C, the enzyme activity starts to fall, which may be related to previous reports that the quaternary structure begins a process of disassembly. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The enzyme dihydroorotate dehydrogenase (DHODH) has been suggested as a promising target for the design of trypanocidal agents. We report here the discovery of novel inhibitors of Trypanosoma cruzi DHODH identified by a combination of virtual screening and ITC methods. Monitoring of the enzymatic reaction in the presence of selected ligands together with structural information obtained from X-ray crystallography analysis have allowed the identification and validation of a novel site of interaction (S2 site). This has provided important structural insights for the rational design of T cruzi and Leishmania major DHODH inhibitors. The most potent compound (1) in the investigated series inhibits TcDHODH enzyme with K(i)(app) value of 19.28 mu M and possesses a ligand efficiency of 0.54 kcal mol(-1) per non-H atom. The compounds described in this work are promising hits for further development. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The ruthenium NO donors of the group trans-[Ru(NO)(NH(3))(4)L](n+), where the ligand (L) is N-heterocyclic H(2)O, SO(3)(2 -), or triethyl phosphite, are able to lyse Trypanosoma cruzi in vitro and in vivo. Using half-maximal (50%) inhibitory concentrations against bloodstream trypomastigotes (IC(50)(try)) and cytotoxicity data on mammalian V-79 cells (IC(50)(V79)), the in vitro therapeutic indices (TIs) (IC(50)(V79)/IC(50)(try)) for these compounds were calculated. Compounds that exhibited an in vitro TI of >= 10 and trypanocidal activity against both epimastigotes and trypomastigotes with an IC(50)(try/epi) of <= 100 mu M were assayed in a mouse model for acute Chagas` disease, using two different routes (intraperitoneal and oral) for drug administration. A dose-effect relationship was observed, and from that, the ideal dose of 400 nmol/kg of body weight for both trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) (isn, isonicotinamide) and trans-[Ru(NO)(NH3) 4imN](BF4) 3 (imN, imidazole) and median (50%) effective doses (ED50) of 86 and 190 nmol/kg, respectively, were then calculated. Since the 50% lethal doses (LD(50)) for both compounds are higher than 125 mu mol/kg, the in vivo TIs (LD(50)/ED(50)) of the compounds are 1,453 for trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and 658 for trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3). Although these compounds exhibit a marked trypanocidal activity and are able to react with cysteine, they exhibit very low activity in T. cruzi -glycosomal glyceraldehyde-3-phosphate dehydrogenase tests, suggesting that this enzyme is not their target. The trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compounds are able to eliminate amastigote nests in myocardium tissue at 400-nmol/kg doses and ensure the survival of all infected mice, thus opening a novel set of therapies to try against trypanosomatids.
Resumo:
In previous studies, we identified promising anti-Trypanosoma cruzi cruzain inhibitors based on thiazolylhydrazones. To optimize this series, a number of medicinal chemistry directions were explored and new thiazolylhydrazones and thiosemicarbazones were thus synthesized. Potent cruzain inhibitors were identified, such as thiazolylhydrazones 3b and 3j, which exhibited IC(50) of 200-400 nM. Furthermore, molecular docking studies showed concordance with experimentally derived structure-activity relationships (SAR) data. In the course of this work, lead compounds exhibiting in vitro activity against both the epimastigote and trypomastigote forms of T. cruzi were identified and in vivo general toxicity analysis was subsequently performed. Novel SAR were documented, including the importance of the thiocarbonyl carbon attached to the thiazolyl ring and the direct comparison between thiosemicarbazones and thiazolylhydrazones. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.