68 resultados para COATED IMPLANTS
Resumo:
Background. In a pilot study, the authors aimed to determine the success rate of dental implants placed in patients who were positive for human immunodeficiency virus (HIV) and were receiving different regimens of highly active anti-retroviral therapy (HAART). They considered patients` levels of cluster of differentiation (CD) 4(+) cells and viral load, and they attempted to verify whether patients with baseline biochemical signs of bone mineral density loss could experience osseointegration impairment. Materials and Methods. One of the authors, a dentist, placed dental implants in the posterior mandibles of 40 volunteers, divided into three groups: one composed of HIV-positive patients receiving protease inhibitor (PI)-based HAART; a second composed of HIV-positive patients receiving nonnucleoside reverse transcriptase inhibitor based HAART (without PI); and a control group composed of HIV-negative participants. The authors assessed pen-implant health six and 12 months after implant loading. They analyzed the success of the implants in relation to CD4(+) cell counts, viral load and baseline pyridinoline and deoxypyridinoline values. Results. The authors followed 59 implants for 12 months after loading. Higher baseline levels of pyridinoline and deoxypyridinoline found in HIV-positive participants did not interfere with osseointegration after 12 months of follow-up. Average pen-implant bone loss after 12 months was 0.49 millimeters in group 1, 0.47 mm in group 2, and 0.55 mm in the control group. Conclusions. The placement of dental implants in HIV-positive patients is a reasonable treatment option, regardless of CD4(+) cell count, viral load levels and type of antiretroviral therapy. Longer, follow-up periods are necessary to ascertain the predictability of the long-term success of dental implants in these patients. Clinical Implications. Limited published scientific evidence is available to guide clinicians in regard to possible increased risks associated with dental implant placement in HIV-positive patients.
Resumo:
This study compared ultrasonic chemical vapor deposition (CVD)-coated tip (CVDentus #8.1117-1; Clorovale Diamantes Ind. e Com. Ltda Epp, Sao Jose dos Campos, SP, Brazil) versus high-speed (#FG700L) and low-speed (#699) carbide burs for apicoectomy, evaluating the time required for resection and analyzing the root-end surfaces by scanning electron microscopy. Thirty extracted human premolars had the canals instrumented and obturated and were randomly assigned to 3 groups (n = 10), according to the instrument used for root-end resection. The time required for resection of the apical 2 mm of each root was recorded. The resected apical segments were dried, sputter coated with gold, and examined with a scanning electron microscope at X 350 magnification. A four-point (0-3) scoring system was used to evaluate the apical surface smoothness. The results were analyzed statistically by the Kruskal-Wallis test and two-by-two comparisons analyses were performed using the Miller test. The significance level was set at 5%. Root-end resection with the high-speed bur was significantly faster (p < 0.05) compared with the low-speed bur and CVD tip. The carbide burs produced significantly smoother root-end surfaces than the CVD tip (p < 0.05). The low-speed bur produced the smoothest root-end surfaces, whereas the roughest and most irregular root ends (p < 0.05) were obtained with the CVD tip. However, no statistically significant difference (p > 0.05) was found between the high- and low-speed burs regarding the surface roughness of the resected root ends (p > 0.05). In conclusion, under the tested conditions, ultrasonic root-end resection took a longer time and resulted in rougher surfaces compared with the use of carbide burs at both high and low speed. (J Endod 2009;35:265-268)
Resumo:
This study evaluated the biomechanical and microscopic response of previously grafted bone to titanium implants. The lower incisors of 16 rabbits were surgically extracted, and bilateral perforations communicating with the remaining sockets were created distally. A socket/perforation defect on each mandible was chosen at random to be immediately filled with a xenogenic graft, whereas the contralateral perforation was left to heal naturally and served as a paired control. After 60 days, titanium implants were installed in the previously operated areas. After periods of 2 and 6 months, the animals were killed, and the force necessary to retrieve implants as well as the bone-implant contact (BIC) and bone mass (BM) were quantified and statistically compared by 2-way analysis of variance and Tukey`s test (alpha = .05). No significant differences in removal torque were observed, either by time or by treatment condition. Differences in BIC and BM between experimental and control groups were not statistically significant through the intervals studied (P < .05). The presence of a xenogenic graft did not influence the microscopic tissue response to titanium implants or fixation into newly formed or mature bone.
Resumo:
This four-experiment series sought to evaluate the potential of children with neurosensory deafness and cochlear implants to exhibit auditory-visual and visual-visual stimulus equivalence relations within a matching-to-sample format. Twelve children who became deaf prior to acquiring language (prelingual) and four who became deaf afterwards (postlingual) were studied. All children learned auditory-visual conditional discriminations and nearly all showed emergent equivalence relations. Naming tests, conducted with a subset of the: children, showed no consistent relationship to the equivalence-test outcomes.. This study makes several contributions: to the literature on stimulus equivalence. First; it demonstrates that both pre- and postlingually deaf children-can: acquire auditory-visual equivalence-relations after cochlear implantation, thus demonstrating symbolic functioning. Second, it directs attention to a population that may be especially interesting for researchers seeking to analyze the relationship. between speaker and listener repertoires. Third, it demonstrates the feasibility of conducting experimental studies of stimulus control processes within the limitations of a hospital, which these children must visit routinely for the maintenance of their cochlear implants.
Resumo:
The electrical stimulation generated by the Cochlear Implant (CI) may improve the neural synchrony and hence contribute to the development of auditory skills in patients with Auditory Neuropathy / Auditory Dyssynchrony (AN/AD). Aim: Prospective cohort cross-sectional study to evaluate the auditory performance and the characteristics of the electrically evoked compound action potential (ECAP) in 18 children with AN/AD and cochlear implants. Material and methods: The auditory perception was evaluated by sound field thresholds and speech perception tests. To evaluate ECAP`s characteristics, the threshold and amplitude of neural response were evaluated at 80Hz and 35Hz. Results: No significant statistical difference was found concerning the development of auditory skills. The ECAP`s characteristics differences at 80 and 35Hz stimulation rate were also not statistically significant. Conclusion: The CI was seen as an efficient resource to develop auditory skills in 94% of the AN/AD patients studied. The auditory perception benefits and the possibility to measure ECAP showed that the electrical stimulation could compensate for the neural dyssynchrony caused by the AN/AD. However, a unique clinical procedure cannot be proposed at this point. Therefore, a careful and complete evaluation of each AN/AD patient before recommending a Cochlear Implant is advised. Clinical Trials: NCT01023932
Resumo:
Objective To evaluate the survival rate of dental implants placed in the cleft area Design Retrospective study Setting Hospital for Rehabilitation of Craniofacial Anomalies, Brazil Institutional Tertiary Healthcare Center Patients 120 patients who received dental implants in the grafted cleft area in the years 1999 to 2005 Interventions Clinical data were evaluated from the records of 120 patients according to the following criteria placement grafted, cleft area, and age at surgery, age at placement of dental implants, site and dimension of implants, interval between placement of implants and the last clinical follow-up, and interval between placement and removal or indication for removal of implants Main Outcome Measures Percentage of survival rate of implants Results Mean age at placement of the bone graft was 17 6 years and 21 years at placement of implants A total of 123 cleft areas received secondary bone graft and bone graft to install implants (regraft) The mean survival rate was 34 months since placement of the implant to the last clinical follow-up and 26 months since placement of the prosthesis Seven dental implants were removed The survival rate since placement to the last clinical follow-up was 94 3% Conclusion Rehabilitation of the cleft area with dental implants is a viable and secure alternative, with good prognosis
Resumo:
Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)
Resumo:
Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82
Resumo:
Objectives The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate (R)) and a bioactive glass (Biogran (R)) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. Material and methods Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate (R), Biogran (R) particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial-implanted and control sites. Eight weeks post-Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone-implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. Results The presence of Biosilicate (R) or Biogran (R) particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate (R), Biogran (R), and the non-implanted group. Conclusions The results of the present study indicate that filling of sockets with either Biosilicate (R) or Biogran (R) particles preserves alveolar bone ridge height and allows osseointegration of Ti implants. To cite this article:Roriz VM, Rosa AL, Peitl O, Zanotto ED, Panzeri H, de Oliveira PT. Efficacy of a bioactive glass-ceramic (Biosilicate (R)) in the maintenance of alveolar ridges and in osseointegration of titanium implants.Clin. Oral Impl. Res. 21, 2010; 148-155.doi: 10.1111/j.1600-0501.2009.01812.x.
Resumo:
There is no consensus in literature regarding the best plan for prosthetic rehabilitation with partial multiple adjacent implants to minimize stress generated in the bone-implant interface. The aim of this study was to evaluate the biomechanical behavior of cemented fixed partial dentures, splinted and nonsplinted, on Morse taper implants and with different types of coating material (ceramic and resin), using photoelastic stress analysis. A photoelastic model of an interposed edentulous space, missing a second premolar and a first molar, and rehabilitated with 4 different types of cemented crowns and supported by 2 adjacent implants was used. Groups were as follows: UC, splinted ceramic crowns; IC, nonsplinted ceramic crowns; UR, splinted resin crowns; and IR, nonsplinted resin crowns. Different vertical static loading conditions were performed: balanced occlusal load, 10 kgf; simultaneous punctiform load on the implanted premolar and molar, 10 kgf; and alternate punctiform load on the implanted premolar and molar, 5 kgf. Changes in stress distribution were analyzed in a polariscope, and digital photographs were taken of each condition to allow comparison of stress pattern distribution around the implants. Cementation of the fixed partial dentures generated stresses between implants. Splinted restorations distributed the stresses more evenly between the implants than nonsplinted when force was applied. Ceramic restorations presented better distribution of stresses than resin restorations. Based on the results obtained, it was concluded that splinted ceramic restorations promote better stress distribution around osseointegrated implants when compared with nonsplinted crowns; metal-ceramic restorations present less stress concentration and magnitude than metal-plastic restorations.
Resumo:
Purpose: Gaps between an abutment and a dental implant are unavoidable, and microleakage may occur, leading to problems such as malodor and peri-implantitis. The aim of the present in vitro study was to investigate leakage of Staphylococcus aureus through the implant/abutment interface by the method of bacterial culture, and to compare the leakage rates of two different types of implant-abutment connections. Materials and Methods: Twenty Morse taper implants with abutments were divided into two groups: group A, which were evaluated for microleakage into the inner part of the implants, and group B, which were evaluated for microleakage from the inner part of the implants. Twenty internal-hexagon implants with abutments were also divided into two groups: group C, which were evaluated for microleakage into the inner part of the implants, and group D, which were evaluated for microleakage from the inner part of the implants. For the evaluation of leakage from the implants, the assemblies had the inner parts inoculated with S aureus, and each assembly was incubated in sterile brain heart infusion broth for 1 week. For assessment of leakage into the implants, each assembly was submerged in 4 mL S aureus culture in tubes and incubated for 2 weeks. The microleakage of the two implant connections was compared. Results: Microbial leakage occurred in all groups, and there was no statistically significant difference between groups A and C or between groups B and D. Conclusions: In vitro, S aureus leakage through the implant/abutment interface occurred with both Morse taper and internal-hexagon implants. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:56-62
Resumo:
Objectives The aim of this study was to histomorphometrically evaluate the influence of interimplant distances (ID) and implant placement depth on bone remodeling around contiguous Morse cone connection implants with `platform-shifting` in a dog model. Material and methods Bilateral mandibular premolars of six dogs were extracted, and after 12 weeks, each dog received 8 implants, four placed 1.5 mm subcrestally (SCL) on one side of the mandible and four placed equicrestally (ECL) on the other side, alternating the ID of 2 and 3 mm. The experimental groups were SCL with IDs of 2 mm (2 SCL) and 3 mm (3 SCL) and ECL with IDs of 2 mm (2 ECL) and 3 mm (3 ECL). Metallic crowns were immediately installed. After 8 weeks, the animals were euthanized and histomorphometric analyses were performed to compare bone remodeling in the groups. Results The SCL groups` indices of crestal bone resorption were significantly lower than those of ECL groups. In addition, the vertical bone resorption around the implants was also numerically inferior in the SCL groups, but without statistical significance. No differences were obtained between the different IDs. All the groups presented similar good levels of bone-to-implant contact and histological bone density. Conclusion The subcrestal placement of contiguous Morse cone connection implants with `platform shifting` was more efficient in preserving the interimplant crestal bone. The IDs of 2 and 3 mm did not affect the bone remodeling significantly under the present conditions. To cite this article:Barros RRM, Novaes AB Jr., Muglia VA, Iezzi G, Piattelli A. Influence of interimplant distances and placement depth on peri-implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 371-378.doi: 10.1111/j.1600-0501.2009.01860.x.
Resumo:
To evaluate the checkerboard DNA-DNA hybridization method for detection and quantitation of bacteria from the internal parts of dental implants and to compare bacterial leakage from implants connected either to cast or to pre-machined abutments. Nine plastic abutments cast in a Ni-Cr alloy and nine pre-machined Co-Cr alloy abutments with plastic sleeves cast in Ni-Cr were connected to Branemark-compatible implants. A group of nine implants was used as control. The implants were inoculated with 3 mu l of a solution containing 10(8) cells/ml of Streptococcus sobrinus. Bacterial samples were immediately collected from the control implants while assemblies were completely immersed in 5 ml of sterile Tripty Soy Broth (TSB) medium. After 14 days of anaerobic incubation, occurrence of leakage at the implant-abutment interface was evaluated by assessing contamination of the TSB medium. Internal contamination of the implants was evaluated with the checkerboard DNA-DNA hybridization method. DNA-DNA hybridization was sensitive enough to detect and quantify the microorganism from the internal parts of the implants. No differences in leakage and in internal contamination were found between cast and pre-machined abutments. Bacterial scores in the control group were significantly higher than in the other groups (P < 0.05). Bacterial leakage through the implant-abutment interface does not significantly differ when cast or pre-machined abutments are used. The checkerboard DNA-DNA hybridization technique is suitable for the evaluation of the internal contamination of dental implants although further studies are necessary to validate the use of computational methods for the improvement of the test accuracy. To cite this article:do Nascimento C, Barbosa RES, Issa JPM, Watanabe E, Ito IY, Albuquerque Junior RF. Use of checkerboard DNA-DNA hybridization to evaluate the internal contamination of dental implants and comparison of bacterial leakage with cast or pre-machined abutments.Clin. Oral Impl. Res. 20, 2009; 571-577.doi: 10.1111/j.1600-0501.2008.01663.x.
Resumo:
Internal tapered connections were developed to improve biomechanical properties and to reduce mechanical problems found in other implant connection systems. The purpose of this study was to evaluate the effects of mechanical loading and repeated insertion/removal cycles on the torque loss of abutments with internal tapered connections. Sixty-eight conical implants and 68 abutments of two types were used. They were divided into four groups: groups 1 and 3 received solid abutments, and groups 2 and 4 received two-piece abutments. In groups 1 and 2, abutments were simply installed and uninstalled; torque-in and torque-out values were measured. In groups 3 and 4, abutments were installed, mechanically loaded and uninstalled; torque-in and torque-out values were measured. Under mechanical loading, two-piece abutments were frictionally locked into the implant; thus, data of group 4 were catalogued under two subgroups (4a: torque-out value necessary to loosen the fixation screw; 4b: torque-out value necessary to remove the abutment from the implant). Ten insertion/removal cycles were performed for every implant/abutment assembly. Data were analyzed with a mixed linear model (P <= 0.05). Torque loss was higher in groups 4a and 2 (over 30% loss), followed by group 1 (10.5% loss), group 3 (5.4% loss) and group 4b (39% torque gain). All the results were significantly different. As the number of insertion/removal cycles increased, removal torques tended to be lower. It was concluded that mechanical loading increased removal torque of loaded abutments in comparison with unloaded abutments, and removal torque values tended to decrease as the number of insertion/removal cycles increased. To cite this article:Ricciardi Coppede A, de Mattos MdaGC, Rodrigues RCS, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study.Clin. Oral Impl. Res. 20, 2009; 624-632.doi: 10.1111/j.1600-0501.2008.01690.x.
Resumo:
The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments. Int J Prosthodont 2009;22:283-286.