56 resultados para CELL-DERIVED FACTOR-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis (PCM) is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. Anti-PCM vaccine formulations based on the secreted fungal cell wall protein (gp43) or the derived P10 sequence containing a CD4(+) T-cell-specific epitope have shown promising results. In the present study, we evaluated new anti-PCM vaccine formulations based on the intranasal administration of P. brasiliensis gp43 or the P10 peptide in combination with the Salmonella enterica FliC flagellin, an innate immunity agonist binding specifically to the Toll-like receptor 5, in a murine model. BALB/c mice immunized with gp43 developed high-specific-serum immunoglobulin G1 responses and enhanced interleukin-4 (IL-4) and IL-10 levels. On the other hand, mice immunized with recombinant purified flagellins genetically fused with P10 at the central hypervariable domain, either flanked or not by two lysine residues, or the synthetic P10 peptide admixed with purified FliC elicited a prevailing Th1-type immune response based on lung cell-secreted type 1 cytokines. Mice immunized with gp43 and FliC and intratracheally challenged with P. brasiliensis yeast cells had increased fungal proliferation and lung tissue damage. In contrast, mice immunized with the chimeric flagellins and particularly those immunized with P10 admixed with FliC reduced P. brasiliensis growth and lung damage. Altogether, these results indicate that S. enterica FliC flagellin modulates the immune response to P. brasiliensis P10 antigen and represents a promising alternative for the generation of anti-PCM vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of the present study were to identify the cis-elements of the promoter absolutely required for the efficient rat NHE3 gene transcription and to locate positive and negative regulatory elements in the 5’-flanking sequence (5’FS), which might modulate the gene expression in proximal tubules, and to compare this result to those reported for intestinal cell lines. We analyzed the promoter activity of different 5’FS segments of the rat NHE3 gene, in the OKP renal proximal tubule cell line by measuring the activity of the reporter gene luciferase. Because the segment spanning the first 157 bp of 5’FS was the most active it was studied in more detail by sequential deletions, point mutations, and gel shift assays. The essential elements for gene transcription are in the region -85 to -33, where we can identify consensual binding sites for Sp1 and EGR-1, which are relevant to NHE3 gene basal transcription. Although a low level of transcription is still possible when the first 25 bp of the 5’FS are used as promoter, efficient transcription only occurs with 44 bp of 5’FS. There are negative regulatory elements in the segments spanning -1196 to -889 and -467 to -152, and positive enhancers between -889 and -479 bp of 5’FS. Transcription factors in the OKP cell nuclear extract efficiently bound to DNA elements of rat NHE3 promoter as demonstrated by gel shift assays, suggesting a high level of similarity between transcription factors of both species, including Sp1 and EGR-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: CD4(+)CD25(high) regulatory T (T(Reg)) cells modulate antigen-specific T cell responses, and can suppress anti-viral immunity. In HTLV-1 infection, a selective decrease in the function of T(Reg) cell mediated HTLV-1-tax inhibition of FOXP3 expression has been described. The purpose of this study was to assess the frequency and phenotype of T(Reg) cells in HTLV-1 asymptomatic carriers and in HTLV-1-associated neurological disease (HAM/TSP) patients, and to correlate with measures of T cell activation. Results: We were able to confirm that HTLV-1 drives activation, spontaneous IFN gamma production, and proliferation of CD4+ T cells. We also observed a significantly lower proportion of CTLA-4(+) T(Reg) cells (CD4(+)CD25(high) T cells) in subjects with HAM/TSP patients compared to healthy controls. Ki-67 expression was negatively correlated to the frequency of CTLA-4(+) T(Reg) cells in HAM/TSP only, although Ki-67 expression was inversely correlated with the percentage of CD127(low) T(Reg) cells in healthy control subjects. Finally, the proportion of CD127(low) T(Reg) cells correlated inversely with HTLV-1 proviral load. Conclusion: Taken together, the results suggest that T(Reg) cells may be subverted in HAM/TSP patients, which could explain the marked cellular activation, spontaneous cytokine production, and proliferation of CD4(+) T cells, in particular those expressing the CD25(high)CD127(low) phenotype. T(Reg) cells represent a potential target for therapeutic intervention for patients with HTLV-1-related neurological diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The protozoan Trypanosoma cruzi is the causative agent of Chagas disease. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed. There is a clear necessity to develop new drugs and strategies for the control and treatment of Chagas disease. Recent papers have suggested the ecto-nucleotidases (from CD39 family) from pathogenic agents as important virulence factors. In this study we evaluated the influence of Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) activity on infectivity and virulence of T. cruzi using both in vivo and in vitro models. Methodology/Principal Findings: We followed Ecto-NTPDase activities of Y strain infective forms (trypomastigotes) obtained during sequential sub-cultivation in mammalian cells. ATPase/ ADPase activity ratios of cell-derived trypomastigotes decreased 3- to 6-fold and infectivity was substantially reduced during sequential sub-cultivation. Surprisingly, at third to fourth passages most of the cell-derived trypomastigotes could not penetrate mammalian cells and had differentiated into amastigote-like parasites that exhibited 3- to 4-fold lower levels of Ecto-NTPDase activities. To evidence the participation of T. cruzi Ecto-NTPDase1 in the infective process, we evaluated the effect of known Ecto-ATPDase inhibitors (ARL 67156, Gadolinium and Suramin), or anti-NTPDase-1 polyclonal antiserum on ATPase and ADPase hydrolytic activities in recombinant T. cruzi NTPDase-1 and in live trypomastigotes. All tests showed a partial inhibition of Ecto-ATPDase activities and a marked inhibition of trypomastigotes infectivity. Mice infections with Ecto-NTPDase-inhibited trypomastigotes produced lower levels of parasitemia and higher host survival than with non-inhibited control parasites. Conclusions/Significance: Our results suggest that Ecto-ATPDases act as facilitators of infection and virulence in vitro and in vivo and emerge as target candidates in chemotherapy of Chagas disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthrospira platensis was cultivated in tubular photobioreactor using different photosynthetic photon flux densities (PPFD) and protocols of (NH(4))(2)SO(4) fed-hatch supply. Results were evaluated by variance analysis selecting maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion factor (Y(X/N)) and biomass, protein and lipid contents as responses. At PPFD of 120 and 240 mu mol-photons/m(2) s, a parabolic profile of (NH(4))(2)SO(4) addition aiming at producing biomass with 7% nitrogen content ensured X(m) values (14.1 and 12.2 g/L, respectively) comparable to those obtained with NaNO(3). At PPFD of 240 mu mol-photons/m(2) s, P(x) (1.69 g/Ld) was 36% higher, although the photosynthetic efficiency (3.0%) was less than one-half that at PPFD of 120 mu mol-photons/m(2) s. Biomass was shown to be constituted by about 35% proteins and 10% lipids, without any dependence on PPFD or kind of nitrogen source. These results highlight the possible use of (NH(4))(2)SO(4) as alternative, cheap nitrogen source for A. platensis cultivation in tubular photobioreactors. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1271-1277, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthrospira platensis was cultivated in minitanks at 13 klux, using a mixture of KNO(3) and NH(4)Cl as nitrogen source. Fed-batch daily supply of NH(4)Cl at exponentially-increasing feeding rate allowed preventing ammonia toxicity and nitrogen deficiency, providing high maximum cell concentration (X(m)) and high-quality biomass (21.85 mg chlorophyll g cells(-1); 20.5% lipids; 49.8% proteins). A central composite design combined to response surface methodology was utilized to determine the relationships between responses (X(m), cell productivity and nitrogen-to-cell conversion factor) and independent variables (KNO(3) and NH(4)Cl concentrations). Under optimum conditions (15.5 mM KNO3; 14.1 mM NH(4)Cl), X(m) was 4327 mg L(-1), a value almost coincident with that obtained with only 25.4 mM KNO(3), but more than twice that obtained with 21.5 mM NH(4)Cl. A 30%-reduction of culture medium cost can be estimated when compared to KNO(3)-batch runs, thus behaving as a cheap alternative for the commercial production of this cyanobacterium. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) play an important role in glioma invasion and angiogenesis. The aim of this study was to investigate whether specific genetic polymorphisms of ICAM-1 and PECAM-1 could be associated with glioma development and progression. Single-nucleotide polymorphism in codon 469 of ICAM-1 and codon 125 of PECAM-1 were examined in 158 patients with astrocytomas and 162 controls using polymerase chain reaction and restriction enzyme analysis. The distribution of PECAM-1 polymorphic genotypes in astrocytomas did not show any significant difference. However, a specific ICAM-1 genotype (G/G, corresponding to Lys469Glu) exhibited higher frequency in grade II astrocytomas compared to controls, grade III, and grade IV astrocytomas; suggesting that this polymorphism could be involved in the development of grade II astrocytomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mucin 1 (MUC1) is a glycoprotein that is expressed on apical cell membranes in a variety of normal tissues. MUC1 is involved in cell signaling, inhibition of cell-cell and cell matrix adhesion, apoptosis, proliferation, and transcription. Hypoxia is an important factor that promotes cancer metastasis and stimulates angiogenesis and tumor progression. Hypoxia inducible factor 1 (HIF-1 alpha) and carbonic anhydrase IX (CAIX) are two molecules that are involved in this process. The role of hypoxia in MUC1+ invasive ductal breast carcinomas is not well established. In this study, the expression of MUC1 was correlated with the hypoxia-associated markers HIF-1 alpha and CAIX, as well as several immunohistochemical markers and clinicopathologic features of prognostic significance in 243 invasive ductal carcinomas. MUC1 was overexpressed in 37.0% of patients and correlated with the expression of estrogen receptor (p = 0.0001), progesterone receptor (p = 0.0001), HIF-1 alpha (p = 0.006), VEGF (p = 0.024), and p53 (p = 0.025). In breast cancer, MUC1 expression has been associated with increased degradation of inhibitor of NF-kappa B (I kappa B alpha), driving NF-kappa B to the nucleus and blocking apoptosis and promoting cell survival. We analyzed NF-kappa B expression in MUC1+ breast carcinoma and found a very significant relationship between these proteins (p = 0.0001). Our findings indicate that MUC1 may play a role in the regulation of hormone receptors by increasing the inactivation of p53 and targeting NF-kappa B to the nucleus. Our data also support the notion that activation of HIF-1 alpha in MUC1+ breast carcinomas may modulate VEGF expression, allowing a metabolic adaptation to hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPAR alpha and PPAR gamma, and plasma insulin-like growth factor 1 IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPAR gamma protein, not PPAR alpha, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. J. Nutr. 141: 1049-1055, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 296: E681-E689, 2009. First published January 21, 2009; doi:10.1152/ajpendo.90931.2008.-Activation of insulin signaling and cell cycle intermediates is required for adult beta-cell proliferation. Here, we report a model to study beta-cell proliferation in living rats by administering three different doses of dexamethasone (0.1, 0.5, and 1.0 mg/kg ip, DEX 0.1, DEX 0.5, and DEX 1.0, respectively) for 5 days. Insulin sensitivity, insulin secretion, and histomorphometric data were investigated. Western blotting was used to analyze the levels of proteins related to the control of beta-cell growth. DEX 1.0 rats, which present moderate hyperglycemia and marked hyperinsulinemia, exhibited a 5.1-fold increase in beta-cell proliferation and an increase (17%) in beta-cell size, with significant increase in beta-cell mass, compared with control rats. The hyperinsulinemic but euglycemic DEX 0.5 rats also showed a significant 3.6-fold increase in beta-cell proliferation. However, DEX 0.1 rats, which exhibited the lowest degree of insulin resistance, compensate for insulin demand by improving only islet function. Activation of the insulin receptor substrate 2/phosphatidylinositol 3-kinase/serine-threoninekinase/ribosomalprotein S6 kinase pathway, as well as protein retinoblastoma in islets from DEX 1.0 and DEX 0.5, but not in DEX 0.1, rats was also observed. Therefore, increasing doses of dexamethasone induce three different degrees of insulin requirement in living rats, serving as a model to investigate compensatory beta-cell alterations. Augmented beta-cell mass involves beta-cell hyperplasia and, to a lower extent, beta-cell hypertrophy. We suggest that alterations in circulating insulin and, to a lesser extent, glucose levels could be the major stimuli for beta-cell proliferation in the dexamethasone-induced insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the in vivo stimulatory effects of Cramoll 1,4 on rat spleen lymphocytes as evidenced by an increase in intracellular reactive oxygen species (ROS) production, Ca(2+) levels, and interleukin (IL)-1 beta expression. Cramoll 1,4 extracted from seeds of the Leguminosae Cratylia mollis Mart., is a lectin with antitumor and lymphocyte mitogenic activities. Animals (Nine-week-old male albino Wistar rats, Rattus norvegicus) were treated with intraperitoneal injection of Cramoll 1,4 (235 mu g ml(-1) single dose) and, 7 days later, spleen lymphocytes were isolated and analyzed for intracellular ROS, cytosolic Ca(2+), and IL-6, IL-10, and IL-1 mRNAs. Cell viability was investigated by annexin V-FITC and 7-amino-actinomycin D staining. The data showed that in lymphocytes activated by Cramoll 1,4 the increase in cytosolic and mitochondrial ROS was related to higher cytosolic Ca(2+) levels. Apoptosis and necrosis were not detected in statistically significant values and thus the lectin effector activities did not induce lymphocyte death. In vivo Cramoll 1,4 treatment led to a significant increase in IL-1 beta but IL-6 and -10 levels did not change. Cramoll 1,4 had modulator activities on spleen lymphocytes and stimulated the Th2 response.