36 resultados para Botulinum toxin-A
Resumo:
Abrus pulchellus seeds contain at least seven closely related and highly toxic type 2 ribosome-inactivating pulchellins, each consisting of a toxic A-chain linked to a sugar binding B-chain. In the present study, four pulchellin isoforms (termed P I, P II, P III and P IV) were isolated by affinity, ion exchange and chromatofocusing chromatographies, and investigated with respect to toxicity and sugar binding specificity. Half maximal inhibitory concentration and median lethal dose values indicate that P I and P II have similar toxicities and that both are more toxic to cultured HeLa cells and mice than P III and P IV. Interestingly, the secondary structural characteristics and sugar binding properties of the respective pairs of isoforms correlate well with the two toxicity levels, in that P I/P II and P III/P IV form two specific subgroups. From the deduced amino acids sequences of the four isoforms, it is clear that the highest similarity within each subgroup is found to occur within domain 2 of the B-chains, suggesting that the disparity in toxicity levels might be attributed to subtle differences in B-chain-mediated cell surface interactions that precede and determine toxin uptake pathways.
Resumo:
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Experimental evidence shows that the mechanism of pore formation by actinoporins is a multistep process, involving binding of the water-soluble monomer to the membrane and subsequent oligomerization on the membrane surface, leading to the formation of a functional pore. However, as for other eukaryotic pore-forming toxins, the molecular details of the mechanism of membrane insertion and oligomerization are not clear. In order to obtain further insight with regard to the structure-function relationship in sticholysins, we designed and produced three cysteine mutants of recombinant sticholysin I (rStI) in relevant functional regions for membrane interaction: StI E2C and StI F15C (in the N-terminal region) and StI R52C (in the membrane binding site). The conformational characterization derived from fluorescence and CD spectroscopic studies of StI E2C, StI F15C and StI R52C suggests that replacement of these residues by Cys in rStI did not noticeably change the conformation of the protein. The substitution by Cys of Arg(52) in the phosphocholine-binding site, provoked noticeable changes in rStI permeabilizing activity; however, the substitutions in the N-terminal region (Glu(2), Phe(15)) did not modify the toxin`s permeabilizing ability. The presence of a dimerized population stabilized by a disulfide bond in the StI E2C mutant showed higher pore-forming activity than when the protein is in the monomeric state, suggesting that sticholysins pre-ensembled at the N-terminal region could facilitate pore formation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cationic supported bilayers on latex are useful to isolate and immobilize oppositely charged proteins as a monomolecular layer over a range of low protein concentrations and particle number densities. Cholera toxin (CT) from Vibrio cholerae, an 87 kDa AB(5) hexameric protein and bovine serum albumin (BSA) self-assembled on dioctadecyldimethylammonium bromide (DODAB) supported bilayers with high affinity yielding highly organized and monodisperse particulates at 5 x 10(9) particles/mL, over a range of low protein concentrations (0-0.025 mg/mL BSA or CT). Protein association onto the bilayer-covered polystyrene sulfate (PSS) was determined from adsorption isotherms, dynamic light scattering for size distributions and zeta-potential analysis revealing a monomolecular, thin and highly organized protein layer surrounding each particle with potential for biospecific recognition such as antigen-antibody, receptor-ligand, hybridization of oligonucleotide sequences, all of them important in immunodiagnosis, selective biomolecular chromatographic separations, microarrays design and others.
Resumo:
The surface of midgut cells in Hemiptera is ensheathed by a lipoprotein membrane (the perimicrovillar membrane), which delimits a closed compartment with the microvillar membrane, the so-called perimicrovillar space. In Dysdercus peruvianus midgut perimicrovillar space a soluble aminopeptidase maybe involved in the digestion of oligopeptides and proteins ingested in the diet. This D. peruvianus aminopeptidase was purified to homogeneity by ion-exchange chromatography on an Econo-Q column, hydrophobic interaction chromatography on phenyl-agarose column and preparative polyacrylamide gel electrophoresis. The results suggested that there is a single molecular species of aminopeptidase in D. peruvianus midgut. Molecular mass values for the aminopeptidase were estimated to be 106 kDa (gel filtration) and 55 kDa (SDS-PAGE), suggesting that the enzyme occurs as a dimer under native conditions. Kinetic data showed that D. peruvianus aminopeptidase hydrolyzes the synthetic substrates LpNA, RpNA, A beta NA and AsnMCA (K(m)s 0.65, 0.14, 0.68 and 0.74 mM, respectively). The aminopeptidase activity upon LpNA was inhibited by EDTA and 1,10-phenanthroline, indicating the importance of metal ions in enzyme catalysis. One partial sequence of BLAST-identified aminopeptidase was found by random sequencing of the D. peruvianus midgut cDNA library. Semi-quantitative RT-PCR analysis showed that the aminopeptidase genes were expressed throughout the midgut epithelium, in the epithelia of V1, V2 and V3. Malphigian tubules and fat body, but it was not expressed in the salivary glands. These results are important in furthering our understanding of the digestive process in this pest species. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
XACb0070 is an uncharacterized protein coded by the two large plasmids isolated from Xanthomonas axonopodis pv. cirri, the agent of citrus canker and responsible for important economical losses in citrus world production. XACb0070 presents sequence homology only with other hypothetical proteins belonging to plant pathogens, none of which have their structure determined. The NMR-derived solution structure reveals this protein is a homodimer in which each monomer presents two domains with different structural and dynamic properties: a folded N-terminal domain with beta alpha alpha topology which mediates dimerization and a long disordered C-terminal tail. The folded domain shows high structural similarity to the ribbon-helix-helix transcriptional repressors, a family of DNA-binding proteins of conserved 3D fold but low sequence homology: indeed XACb0070 binds DNA. Primary sequence and fold comparison of XACb0070 with other proteins of the ribbon-helix-helix family together with examination of the genes in the vicinity of xacb0070 suggest the protein might be the component of a toxin-antitoxin system. (C) 2010 Elsevier Inc. All rights reserved.