62 resultados para Associative algebras
Resumo:
We determine derived representation type of complete finitely generated local and two-point algebras over an algebraically closed field. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We define intrinsic, natural and metrizable topologies T(Omega), T, T(s,Omega) and T(s) in G(Omega), (K) over bar, G(s)(Omega) and (K) over bar (s) respectively. The topology T(Omega) induces T, T(s,Omega) and T(s). The topologies T(s,Omega) and T(s) coincide with the Scarpalezos sharp topologies.
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have revisited photoassociative ionization (PAI) in a cold sample of Na atmos. A two-color experiment was performed ina magneto-optical trap through the addition of aprobe laser. The observation of a marked change in the PAI rate for a definite frequency range can be attributed to the influence of repuisive levels and a possible avoided crossing between long-range molecular levels. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA
Resumo:
In this work we construct the stationary measure of the N species totally asymmetric simple exclusion process in a matrix product formulation. We make the connection between the matrix product formulation and the queueing theory picture of Ferrari and Martin. In particular, in the standard representation, the matrices act on the space of queue lengths. For N > 2 the matrices in fact become tensor products of elements of quadratic algebras. This enables us to give a purely algebraic proof of the stationary measure which we present for N=3.
Resumo:
We give a list of all possible schemes for performing amino acid and codon assignments in algebraic models for the genetic code, which are consistent with a few simple symmetry principles, in accordance with the spirit of the algebraic approach to the evolution of the genetic code proposed by Hornos and Hornos. Our results are complete in the sense of covering all the algebraic models that arise within this approach, whether based on Lie groups/Lie algebras, on Lie superalgebras or on finite groups.
Resumo:
We study irreducible morphisms of complexes. In particular, we show that the irreducible morphisms having one (finite) irreducible submorphism fall into three canonical forms and we give necessary and sufficient conditions for a given morphism of that type to be irreducible. Our characterization of the above mentioned type of irreducible morphisms of complexes characterizes also some class of irreducible morphisms of the derived category D(-)(A) for A a finite dimensional k-algebra, where k is a field. (C) 2009 Published by Elsevier Inc.
Resumo:
Quadratic alternative superalgebras are introduced and their super-identities and central functions on one odd generator are described. As a corollary, all multilinear skew-symmetric identities and central polynomials of octonions are classified. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Let R be a commutative ring, G a group and RG its group ring. Let phi : RG -> RG denote the R-linear extension of an involution phi defined on G. An element x in RG is said to be phi-antisymmetric if phi(x) = -x. A characterization is given of when the phi-antisymmetric elements of RG commute. This is a completion of earlier work.
Resumo:
Let L be a function field over the rationals and let D denote the skew field of fractions of L[t; sigma], the skew polynomial ring in t, over L, with automorphism sigma. We prove that the multiplicative group D(x) of D contains a free noncyclic subgroup.
Resumo:
We simplify the results of Bremner and Hentzel [J. Algebra 231 (2000) 387-405] on polynomial identities of degree 9 in two variables satisfied by the ternary cyclic sum [a, b, c] abc + bca + cab in every totally associative ternary algebra. We also obtain new identities of degree 9 in three variables which do not follow from the identities in two variables. Our results depend on (i) the LLL algorithm for lattice basis reduction, and (ii) linearization operators in the group algebra of the symmetric group which permit efficient computation of the representation matrices for a non-linear identity. Our computational methods can be applied to polynomial identities for other algebraic structures.
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.
Resumo:
In this paper, we give a sufficient (which is also necessary under a compatibility hypothesis) condition on a set of arrows in the quiver of an algebra A so that A is a split extension of A/M, where M is the ideal of A generated by the classes of these arrows. We also compare the notion of split extension with that of semiconvex extension of algebras.