211 resultados para Antiphospholipid Syndrom, Autoimmunität, Toll-like Rezeptor, NADPH Oxidase
Resumo:
The role of natural killer (NK) T cells in the development of lupus-like disease in mice is still controversial. We treated NZB/W mice with anti-NK1.1 monoclonal antibodies (mAbs) and our results revealed that administration of either an irrelevant immunoglobulin G2a (IgG2a) mAb or an IgG2a anti-NK1.1 mAb increased the production of anti-dsDNA antibodies in young NZB/W mice. However, the continuous administration of an anti-NK1.1 mAb protected aged NZB/W mice from glomerular injury, leading to prolonged survival and stabilization of the proteinuria. Conversely, the administration of the control IgG2a mAb led to an aggravation of the lupus-like disease. Augmented titres of anti-dsDNA in NZB/W mice, upon IgG2a administration, correlated with the production of BAFF/BLyS by dendritic, B and T cells. Treatment with an anti-NK1.1 mAb reduced the levels of interleukin-16, produced by T cells, in spleen cell culture supernatants from aged NZB/W. Adoptive transfer of NK T cells from aged to young NZB/W accelerated the production of anti-dsDNA in recipient NZB/W mice, suggesting that NK T cells from aged NZB/W are endowed with a B-cell helper activity. In vitro studies, using purified NK T cells from aged NZB/W, showed that these cells provided helper B-cell activity for the production of anti-dsDNA. We concluded that NK T cells are involved in the progression of lupus-like disease in mature NZB/W mice and that immunoglobulin of the IgG2a isotype has an enhancing effect on antibody synthesis due to the induction of BAFF/BLyS, and therefore have a deleterious effect in the NZB/W mouse physiology.
Resumo:
The PrP(C) is expressed in several cell types but its physiological function is unknown. Some studies associate the PrP(C) with copper metabolism and the antioxidant activity of SOD. Our hypothesis was that changes in PrP(C) expression lead to abnormal copper regulation and induce SOD downregulation in the vascular wall. Objectives: to study whether the PrP(C) expression undergoes induction by agents that trigger endoplasmic reticulum stress (ERS) and, in this context, to evaluate the SOD activity. Methods: To trigger ERS, in vitro, rabbit aortic smooth muscle cells were challenged for 4, 8 and 18 hours, with angiotensin-II, tunicamycin and 7-ketocholesterol. For in vivo studies rabbit aortic arteries were subjected to injury by balloon catheter. Results: In vitro baseline SOD activity, determined through inhibition of cytochrome-c reduction, was 13.9 +/- 1.2 U/mg protein, angiotensin-II exposed for 8 hours produced an increase in SOD activity, and cellular copper concentration was about 9 times greater only under these conditions. Western blotting analysis for SOD isoenzymes showed an expression profile that was not correlated with the enzymatic activity. PrP(C) expression decreased after exposure to all agents after different incubation periods. RT-PCR assay showed increased mRNA expression for PrP(C) only in cells stimulated for 8 hours with the different stressors. The PrP(C) mRNA expression in rabbit aortic artery fragments, subjected to balloon catheter injury, showed a pronounced increase immediately after overdistension. The results obtained indicated a PrP(C) protection factor during the early part of the ERS exposure period, but did not demonstrate a SOD-like profile for the PrP(C). (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
We previously described the presence of nicotinamide adenine dinucleotide phosphate reduced form [NAD(P)H] oxidase components in pancreatic beta-cells and its activation by glucose, palmitic acid, and proinflammatory cytokines. In the present study, the importance of the NAD(P)H oxidase complex for pancreatic beta-cell function was examined. Rat pancreatic islets were incubated in the presence of glucose plus diphenyleneiodonium, a NAD(P)H oxidase inhibitor, for 1 h or with the antisense oligonucleotide for p47(PHOX) during 24 h. Reactive oxygen species (ROS) production was determined by a fluorescence assay using 2,7-dichlorodihydrofluorescein diacetate. Insulin secretion, intracellular calcium responses, [U-(14)C] glucose oxidation, and expression of glucose transporter-2, glucokinase and insulin genes were examined. Antisense oligonucleotide reduced p47(PHOX) expression [an important NAD(P)H oxidase cytosolic subunit] and similarly to diphenyleneiodonium also blunted the enzyme activity as indicated by reduction of ROS production. Suppression of NAD(P)H oxidase activity had an inhibitory effect on intracellular calcium responses to glucose and glucose-stimulated insulin secretion by isolated islets. NAD(P)H oxidase inhibition also reduced glucose oxidation and gene expression of glucose transporter-2 and glucokinase. These findings indicate that NAD(P)H oxidase activation plays an important role for ROS production by pancreatic beta-cells during glucose-stimulated insulin secretion. The importance of this enzyme complex for the beta-cell metabolism and the machinery involved in insulin secretion were also shown. (Endocrinology 150: 2197-2201, 2009)
Resumo:
Angiotensin II (Ang II) controls blood pressure, electrolyte balance, cell growth and vascular remodeling. Ang II activates NAD(P)H oxidase in several tissues with important function in the control of insulin secretion. Considering the concomitant occurrence of hypertension, insulin resistance and pancreatic B cell secretion impairment in the development of type II diabetes the aim of the present study was to evaluate the effect of ANG II on NAD(P)H oxidase activation in isolated pancreatic islets. We found that ANGII-induced superoxide generation via NAD(P)H oxidase activation and increased protein and mRNA levels of NAD(P)H oxidase subunits (p47(PHOX) and gp91(PHOX)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI-diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110-1117, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.
Resumo:
Positive acute effects of fatty acids (FA) on glucose-stimulated insulin secretion (GSIS) and reactive oxygen species (ROS) formation have been reported. However, those studies mainly focused on palmitic acid actions, and reports on oleic acid (OA) are scarce. In this study, the effect of physiological OA levels on beta-cell function and the mechanisms involved were investigated. Analyses of insulin secretion, FA and glucose oxidation, and ROS formation showed that, at high glucose concentration, OA treatment increases GSIS in parallel with increased ROS content. At high glucose, OA oxidation was increased, accompanied by a suppression of glucose oxidation. Using approaches for protein knockdown of FA receptor G protein-coupled receptor 40 (GPR40) and of p47(PHOX), a reduced nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase component, we observed that GPR40 does not mediate OA effects on ROS formation and GSIS. However, in p47(PHOX) knockdown islets, OA-induced ROS formation and the inhibitory effect of OA on glucose metabolism was abolished. Similar results were obtained by pharmacological inhibition of protein kinase C, a known activator of NAD(P) H oxidase. Thus, ROS derived from OA metabolism via NAD(P) H oxidase are an inhibitor of glucose oxidation. Put together, these results indicate that OA acts as a modulator of glucose oxidation via ROS derived from its own metabolism in beta-cells. (Endocrinology 152: 3614-3621, 2011)
Resumo:
Apocynin, a methoxy-substituted catechol (4-hydroxy-3-methoxyacetophenone), originally extracted from the roots of Picrorhiza kurroa, has been extensively used as a non-toxic inhibitor of the multienzymatic complex NADPH oxidase. We discovered that the analogous methoxy-substituted catechol, 4-Fluoro-2-methoxyphenol (F-apocynin), in which the acetyl group present in apocynin was changed to a fluorine atom, was significantly more potent as an inhibitor of NADPH oxidase activity, myeloperoxidase (MPO) chlorinating activity and phagocytosis of microorganisms by neutrophils; it was also as potent as apocynin in inhibiting tumor necrosis factor-alpha (TNF alpha) release by peripheral blood mononuclear cells. We attribute the increased potency of F-apocynin to its increased lipophilicity, which could facilitate the passage of the drug through the cell membrane. The inhibition of MPO chlorination activity, phagocytosis and TNF alpha release shows that apocynin and F-apocynin actions are not restricted to reactive oxygen species inhibition, but further studies are needed to clarify if these mechanisms are related. Like apocynin, F-apocynin did not show cell toxicity, and is a strong candidate for use in the treatment of inflammatory diseases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.
Resumo:
Background: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. Methodology/Principal Findings: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. Conclusion/Relevance: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.
Resumo:
Background: Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA) on left ventricular structure in Brazilian hypertensive subjects. Methods: We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441) and Vitoria (n = 120)] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping. In addition, NADPH-oxidase activity was quantified in peripheral mononuclear cells from a subgroup of Campinas sample. Results: Genotype frequencies in both samples were consistent with the Hardy-Weinberg equilibrium. Subjects with the T allele presented higher left ventricular mass/height(2.7) than those carrying the CC genotype in Campinas (76.8 +/- 1.6 vs 70.9 +/- 1.4 g/m(2.7); p = 0.009), and in Vitoria (45.6 +/- 1.9 vs 39.9 +/- 1.4 g/m(2.7); p = 0.023) samples. These results were confirmed by stepwise regression analyses adjusted for age, gender, blood pressure, metabolic variables and use of anti-hypertensive medications. In addition, increased NADPH-oxidase activity was detected in peripheral mononuclear cells from T allele carriers compared with CC genotype carriers (p = 0.03). Conclusions: The T allele of the p22-phox C242T polymorphism is associated with higher left ventricular mass/height(2.7) and increased NADPH-oxidase activity in Brazilian hypertensive patients. These data suggest that genetic variation within NADPH-oxidase components may modulate left ventricular remodeling in subjects with systemic hypertension.
Resumo:
Neospora caninum is an intracellular parasite that causes major economic impact on cattle raising farms, and infects a wide range of warm-blooded hosts worldwide. Innate immune mechanisms that lead to protection against this parasite are still unknown. In order to investigate whether myeloid differentiation factor 88 (MyD88) is required for resistance against N. caninum, genetically deficient mice (MyD88(-/-)) and wild type littermates were infected with live tachyzoites and the resistance to infection was evaluated. We found that sub-lethal tachyzoite doses induced acute mortality of MyD88(-/-) mice, which succumbed to infection due to uncontrolled parasite replication. Higher parasitism in MyD88(-/-) mice was associated with the lack of IL-12 production by dendritic cells, delayed IFN-gamma responses by NKT, CD4(+) and CD8(+) T lymphocytes, and production of high levels of IL-10. MyD88(-/-) mice replenished with IL-12 and IFN-gamma abolished susceptibility as the animals survived throughout the experimental period. We conclude that protective IFN-gamma-mediated immunity to N. caninum is dependent on initial MyD88 signaling, in a mechanism triggered by production of IL-12 by dendritic cells. Further knowledge on Toll-like receptor recognition of N. caninum antigens is encouraged, since it could generate new prophylactic and therapeutic tools to control parasite burden.
Resumo:
Background: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. Results: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 mu g of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c(+), CD11b(+) and CD19(+) cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). Conclusions: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.
Resumo:
The main purpose of this research was to analyze the relation of the genetic polymorphisms frequently expressed by antigen-presenting cells, erythrocytes and malaria susceptibility/resistance with the human malaria infection cases. The sample used consisted of 23 Plasmodium vivax ( Pv)- and P. falciparum ( Pf)-infected patients, and 21 healthy individuals as a control group, from the Baixo Amazonas population in Para, Brazil. The Asp299Gly polymorphisms in the Toll-like receptor 4 ( TLR4), and Gly42Asp, Arg89Cys, Ala100Thr, and T-33C in the Duffy gene ( FY) were analyzed by restriction fragment length polymorphism-polymerase chain reaction. The Lys1590Glu and Arg1601Gly polymorphisms in the complement receptor type 1 (CR1) were analyzed by DNA sequencing. According to the results obtained and statistical analysis considering a significance level or alpha = 0.01, we conclude that the low heterozygote frequency (2.27%) for the Asp299Gly mutation, detected in the TLR4 gene, is not related to the Pv and Pf infections in the patients analyzed. Also, the promoter region GATA-1 analysis of the FY gene in the Pv-infected patients showed that the heterozygote frequency for the T-33C mutation (11.36% of the infected patients and 20.45% of the control patients) is not related to infection resistance. Regarding the CR1 gene, the observed heterozygote frequency (9.09%) for the Arg1601Gly mutation in Pf-infected patients when compared to heterozygote frequency in the control group (18.18%) suggests that there is no correlation with infection resistance.
Resumo:
Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.