139 resultados para ANTIMICROBIAL PEPTIDE P34
Resumo:
Um total de 109 cepas de Staphylococci coagulase-negativa foi isolado de leite de vacas com mastite clínica e subclínica, em 35 fazendas, situadas em nove estados brasileiros, no período de fevereiro a maio de 2005. Os isolados foram investigados em relação a susceptibilidade in vitro a diversos agentes antimicrobianos. A resistência à penicilina foi a observação mais freqüente (93,5%), seguida por sulfonamida (88,9%), novobiocina (88,6%) e ampicilina (85,3%). Todas as cepas examinadas mostraram resistência a pelo menos uma das drogas antimicrobianas testadas. Cepas apresentando resistência múltipla foram extremamente comuns, com 10,0% dos microrganismos isolados apresentando resistência a todas as drogas antimicrobianas. Os resultados obtidos indicaram que as cepas de Staphylococci coagulase-negativas, isoladas no Brasil, apresentaram um alto grau de resistência a antimicrobianos. Estes resultados são, provavelmente, uma conseqüência da pressão devida ao uso intensivo de drogas antimicrobianas.
Resumo:
Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) is an important pest for Brazilian sugarcane. In the present study, we detected two distinct spots in hemolymph from septic injured larvae (HDs1 and HDs2), which are separated by 2DE gel electrophoresis. Both spots were subjected to in-gel tryptic digestion and MALDI-TOF/TOF analysis, which revealed the sequence VFGTLGSDDSGLFGK present in both HDs1 and HDs2. This sequence had homology and 80% identity with specific Lepidoptera antimicrobial peptides called gloverins. Analyses using the ImageMaster 2D software showed pI 8.94 of the HDs1 spot, which is similar to that described to Hyalophora gloveri gloverin (pI 8.5). Moreover, the 14-kDa molecular mass of the spot HDs1 is compatible to that of gloverins isolated from the hemolymph of Trichoplusia ni, Helicoverpa armigera and H. gloveri. Antimicrobial assays with partially purified fractions containing the HDs1 and HDs2 polypeptides demonstrated activity against Escherichia coli. This is the first report of antimicrobial polypeptides in D. saccharalis, and the identification of these peptides may help in the generation of new strategies to control this pest.
Resumo:
As a part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), Gram-positive and Gram-negative bacterial isolates were collected from 33 centers in Latin America (centers in Argentina, Brazil, Chile, Colombia, Guatemala, Honduras, Jamaica, Mexico, Panama, Puerto Rico, and Venezuela) from January 2004 to September 2007. Argentina and Mexico were the greatest contributors of isolates to this study. Susceptibilities were determined according to Clinical Laboratory Standards Institute guidelines. Resistance levels were high for most key organisms across Latin America: 48.3% of Staphylococcus aureus isolates were methicillin-resistant while 21.4% of Acinetobacter spp. isolates were imipenem-resistant. Extended-spectrum β-lactamase were reported in 36.7% of Klebsiella pneumoniae and 20.8% of E. coli isolates. Tigecycline was the most active agent against Gram-positive isolates. Tigecycline was also highly active against all Gram-negative organisms, with the exception of Pseuodomonas aeruginosa, against which piperacillin-tazobactam was the most active agent tested (79.3% of isolates susceptible). The in vitro activity of tigecycline against both Gram-positive and Gram-negative isolates indicates that it may be an useful tool for the treatment of nosocomial infections, even those caused by organisms that are resistant to other antibacterial agents.
Resumo:
Five previously synthesized 4-trifluoromethyl-2-(5-aryl-3-styryl-1H-pyrazol-1yl)-pyrimidines and six 5-aryl-3-styryl-1-carboxamidino-1H-pyrazole derivatives were screened for their antioxidant proprieties. The antioxidant activities were evaluated by using the DPPH and the HRP/luminol/H2O2 chemiluminescence assay systems and for their antimicrobial activity (MIC). The results were good for those series in some concentration in comparison with the standards.
Resumo:
A photodynamic effect occurs when photosensitiser molecules absorb light and dissipate the absorbed energy by transferring it to biological acceptors (usually oxygen), generating an excess of reactive species that are able to force cells into death pathways. Several tropical diseases present physiopathological aspects that are accessible to the application of a photosensitiser and local illumination. In addition, disease may be transmitted through infected blood donations, and many of the aetiological agents associated with tropical diseases have been shown to be susceptible to the photodynamic approach. However, there has been no systematic investigation of the application of photoantimicrobial agents in the various presentations, whether to human disease or to the disinfection of blood products or even as photo-insecticides. We aim in this review to report the advances in the photoantimicrobial approach that are beneficial to the field of anti-parasite therapy and also have the potential to facilitate the development of low-cost/high-efficiency protocols for underserved populations.
Resumo:
Avaliou-se a sensibilidade antimicrobiana in vitro de 121 cepas de estafilococos coagulase-negativa isolada de leite de ovelhas Santa Inês, aos fármacos: penicilina, amoxicilina, ampicilina, estreptomicina, oxaciclina, neomicina, cefalotina, gentamicina e sulfonamida. A resistência à sulfonamida foi a mais frequente (27,3%), seguida pela estreptomicina (14,0%) e pela oxaciclina (14,0%), enquanto da gentamicina (1,6%) foi a menos frequente. Todas as cepas foram sensíveis a pelo menos um antimicrobiano, e 20,3% das cepas apresentaram resistência múltipla. Os resultados mostram a importância de Staphylococci coagulase-negativas como agentes causadores de mastite em ovinos, e o perfil de resistência múltipla indica a importância da determinação da resistência à oxaciclina como indicador da presença de ilhas de patogenicidade que contêm fatores de virulência e resistência a outros antimicrobianos que contribuem para a sobrevivência da bactéria ao tratamento.
Resumo:
Background: Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6. Methods: Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results: EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity. Conclusion: a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.
Resumo:
Seven pimarane type-diterpenes re-isolated from Viguiera arenaria Baker and two semi-synthetic pimarane derivatives were evaluated in vitro against the following main microorganisms responsible for dental caries: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis and Lactobacillus casei. The compounds ent-pimara-8(14), 15-dien-19-oic acid (PA); ent-8(14), 15-pimaradien-3 beta-ol; ent-15-pimarene-8 beta, 19-diol; ent-8(14), 15-pimaradien-3 beta-acetoxy and the sodium salt derivative of PA were the most active compounds, displaying MIC values ranging from 2 to 8 mu g.mL(-1). Thus, this class of compounds seems promising as a class of new effective anticariogenic agents. Furthermore, our results also allow us to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to the discovery of new natural compounds that could be employed in the development of oral care products.
Resumo:
Six pimarane-type diterpenes isolated from Viguiera arenaria Baker and two semi-synthetic derivatives were evaluated in vitro against a panel of representative microorganisms responsible for dental root canal infections. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Porphyromonas gingivalis, Prevotella nigrescens, Prevotella intermedia, Prevotella buccae, Fusobacterium nucleatum, Bacteroides fragilis, Actinomyces naeslundii, Actinomyces viscosus, Peptostreptococcus micros, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans. The compounds ent-pimara-8(14), 15-dien-19-oic acid, its sodium salt and ent-8(14), 15-pimaradien-3 beta-ol were the most active, displaying MIC values ranging from 1 to 10 mu g mL(-1). The results also allow us to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to the discovery of new chemicals for use as a complement to instrumental endodontic procedures.
Resumo:
This work evaluated the antimicrobial activity of the methanol and chloroform extracts of the leaves of Miconia cabucu, Miconia rubiginosa, and Miconia stenostachya using the disc-diffusion method. The results obtained showed that the methanol extracts of the leaves of M. rubiginosa and M. stenostachya and the chloroform extract of the leaves of M. cabucu presented antimicrobial activity against the tested microorganisms.
Resumo:
Background: Celery (Apium graveolens) represents a relevant allergen source that can elicit severe reactions in the adult population. To investigate the sensitization prevalence and cross-reactivity of Api g 2 from celery stalks in a Mediterranean population and in a mouse model. Methodology: 786 non-randomized subjects from Italy were screened for IgE reactivity to rApi g 2, rArt v 3 (mugwort pollen LTP) and nPru p 3 (peach LTP) using an allergen microarray. Clinical data of 32 selected patients with reactivity to LTP under investigation were evaluated. Specific IgE titers and cross-inhibitions were performed in ELISA and allergen microarray. Balb/c mice were immunized with purified LTPs; IgG titers were determined in ELISA and mediator release was examined using RBL-2H3 cells. Simulated endolysosomal digestion was performed using microsomes obtained from human DCs. Results: IgE testing showed a sensitization prevalence of 25.6% to Api g 2, 18.6% to Art v 3, and 28.6% to Pru p 3 and frequent co-sensitization and correlating IgE-reactivity was observed. 10/32 patients suffering from LTP-related allergy reported symptoms upon consumption of celery stalks which mainly presented as OAS. Considerable IgE cross-reactivity was observed between Api g 2, Art v 3, and Pru p 3 with varying inhibition degrees of individual patients' sera. Simulating LTP mono-sensitization in a mouse model showed development of more congruent antibody specificities between Api g 2 and Art v 3. Notably, biologically relevant murine IgE cross-reactivity was restricted to the latter and diverse from Pru p 3 epitopes. Endolysosomal processing of LTP showed generation of similar clusters, which presumably represent T-cell peptides. Conclusions: Api g 2 represents a relevant celery stalk allergen in the LTP-sensitized population. The molecule displays common B cell epitopes and endolysosomal peptides that encompass T cell epitopes with pollen and plant-food derived LTP.
Resumo:
The extracts from the root, bark and seed of Garcinia kola are currently used in traditional medicine in Nigeria. The aim of this study was to evaluate the inhibitory activity of crude extracts of G. kola on Fusobacterium nucleatum isolated from the oral cavity. Methanol and aqueous extracts were prepared from the seed and the minimal inhibitory concentration was evaluated by the agar dilution method, using a Wilkins-Chalgren agar supplemented with horse blood (5%), hemin (5 mu g/ml) and menadione (1 mu g/ml). Antimicrobial activity of plant extracts on microbial biofilms was determined in microtiter plates. The seed of G. kola demonstrated significant inhibitory action on F. nucleatum isolates at a concentration of 1.25 and 12.5 mg/ml for amoxicillin resistant strain. It was able to inhibit the microbial biofilm formed by the association of F. nucleatum with Porphyromonas gingivalis ATCC 33277, Aggregatibacter actinomycetemcomitans ATCC 33384 and Prevotella intermedia ATCC 2564 at a concentration of 25 mg/ml. The in-vitro inhibitory effect of G. kola on F. nucleatum population suggests a potential role for its use in oral hygiene.
Resumo:
Objective: The aim of this study was the evaluation of two different photosensitizers activated by red light emitted by light-emitting diodes (LEDs) in the decontamination of carious bovine dentin. Materials and Methods: Fifteen bovine incisors were used to obtain dentin samples which were immersed in brain-heart infusion culture medium supplemented with 1% glucose, 2% sucrose, and 1% young primary culture of Lactobacillus acidophilus 108 CFU/mL and Streptococcus mutans 108 CFU/mL for caries induction. Three different concentrations of the Photogem solution, a hematoporphyrin derivative (1, 2, and 3 mg/mL) and two different concentrations of toluidine blue O (TBO), a basic dye (0.025 and 0.1 mg/mL) were used. To activate the photosensitizers two different light exposure times were used: 60 sec and 120 sec, corresponding respectively to the doses of 24 J/cm(2) and 48 J/cm(2). Results: After counting the numbers of CFU per milligram of carious dentin, we observed that the use of LED energy in association with Photogem or TBO was effective for bacterial reduction in carious dentin, and that the greatest effect on S. mutans and L. acidophilus was obtained with TBO at 0.1 mg/mL and a dose of 48 J/cm(2). It was also observed that the overall toxicity of TBO was higher than that of Photogem, and that the phototoxicity of TBO was higher than that of Photogem. Conclusion: Based on our data we propose a mathematical model for the photodynamic effect when different photosensitizer concentrations and light doses are used.
Resumo:
Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and edema, is a major cause of fetal and maternal morbidity and mortality especially in developing countries. Bj-PRO-10c, a proline-rich peptide isolated from Bothrops jararaca venom, has been attributed with potent anti-hypertensive effects. Recently, we have shown that Bj-PRO-10c-induced anti-hypertensive actions involved NO production in spontaneous hypertensive rats. Using in vitro studies we now show that Bj-PRO-10c was able to increase NO production in human umbilical vein endothelial cells from hypertensive pregnant women (HUVEC-PE) to levels observed in HUVEC of normotensive women. Moreover, in the presence of the peptide, eNOS expression as well as argininosuccinate synthase activity, the key rate-limiting enzyme of the citrulline-NO cycle, were enhanced. In addition, excessive superoxide production due to NO deficiency, one of the major deleterious effects of the disease, was inhibited by Bj-PRO-10c. Bj-PRO-10c induced intracellular calcium fluxes in both, HUVEC-PE and HUVEC, which, however, led to activation of eNOS expression only in HUVEC-PE. Since Bj-PRO-10c promoted biological effects in HUVEC from patients suffering from the disorder and not in normotensive pregnant women, we hypothesize that Bj-PRO-10c induces its anti-hypertensive effect in mothers with preeclampsia. Such properties may initiate the development of novel therapeutics for treating preeclampsia.
Resumo:
This study describes the use of methylene blue (MB) plus light (photodynamic inactivation, PDI) in the presence of hydrogen peroxide (H(2)O(2)) to kill Staphylococcus aureus, Escherichia coli, and Candida albicans. When H(2)O(2) was added to MB plus light there was an increased antimicrobial effect, which could be due to a change in the type of ROS generated or increased microbial uptake of MB. To clarify the mechanism, the production of ROS was investigated in the presence and absence of H(2)O(2). It was observed that ROS production was almost inhibited by the presence of H(2)O(2) when cells were not present. In addition, experiments using different sequence combinations of MB and H(2)O(2) were performed and MB optical properties inside the cell were analyzed. Spectroscopy experiments suggested that the amount of MB was higher inside the cells when H(2)O(2) was used before or simultaneously with PDI, and ROS formation inside C. albicans cells confirmed that ROS production is higher in the presence of H(2)O(2). Moreover enzymatic reduction of MB by E. coli during photosensitizer uptake to the photochemically inactive leucoMB could be reversed by the oxidative effects of hydrogen peroxide, increasing ROS formation inside the microorganism. Therefore, the combination of a photosensitizer such as MB and H(2)O(2) is an interesting approach to improve PDI efficiency.