389 resultados para ALLERGIC AIRWAY DISEASE
Resumo:
Allergic contact dermatitis is the consequence of an immune reaction mediated by T cells against low molecular weight chemicals known as haptens. It is a common condition that occurs in all races and age groups and affects the quality of life of those who present it. The immunological mechanism of this disease has been reviewed in recent decades with significant advance in its understanding. The metabolism and pathway of the haptens as well as the activation and mechanism of action of the cells responsible for both the immune reaction and its completion are discussed in this article.
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
Background and objective: Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a `best CPAP` level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Results: Following application of the `best CPAP`, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema.
Resumo:
Vieira RP, de Andrade VF, Duarte AC, dos Santos AB, Mauad T, Martins MA, Dolhnikoff M, Carvalho CR. Aerobic conditioning and allergic pulmonary inflammation in mice. II. Effects on lung vascular and parenchymal inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 295: L670-L679, 2008. First published August 29, 2008; doi: 10.1152/ajplung.00465.2007.-Recent evidence suggests that asthma leads to inflammation and remodeling not only in the airways but also in pulmonary vessels and parenchyma. In addition, some studies demonstrated that aerobic training decreases chronic allergic inflammation in the airways; however, its effects on the pulmonary vessels and parenchyma have not been previously evaluated. Our objective was to test the hypothesis that aerobic conditioning reduces inflammation and remodeling in pulmonary vessels and parenchyma in a model of chronic allergic lung inflammation. Balb/c mice were sensitized at days 0, 14, 28, and 42 and challenged with ovalbumin ( OVA) from day 21 to day 50. Aerobic training started on day 21 and continued until day 50. Pulmonary vessel and parenchyma inflammation and remodeling were evaluated by quantitative analysis of eosinophils and mononuclear cells and by collagen and elastin contents and smooth muscle thickness. Immunohistochemistry was performed to quantify the density of positive cells to interleukin (IL)-2, IL-4, IL-5, interferon-gamma, IL-10, monocyte chemotatic protein (MCP)-1, nuclear factor (NF)-kappa B p65, and insulin-like growth factor (IGF)-I. OVA exposure induced pulmonary blood vessels and parenchyma inflammation as well as increased expression of IL-4, IL-5, MCP-1, NF-kappa B p65, and IGF-I by inflammatory cells were reduced by aerobic conditioning. OVA exposure also induced an increase in smooth muscle thickness and elastic and collagen contents in pulmonary vessels, which were reduced by aerobic conditioning. Aerobic conditioning increased the expression of IL-10 in sensitized mice. We conclude that aerobic conditioning decreases pulmonary vascular and parenchymal inflammation and remodeling in this experimental model of chronic allergic lung inflammation in mice.
Resumo:
MENDES, F. A. R., F. M. ALMEIDA, A. CUKIER, R. STELMACH, W. JACOB-FILHO, M. A. MARTINS, and C. R. F. CARVALHO. Effects of Aerobic Training on Airway Inflammation in Asthmatic Patients. Med. Sci. Sports Exerc., Vol. 43, No. 2, pp. 197-203, 2011. Purpose: There is evidence suggesting that physical activity has anti-inflammatory effects in many chronic diseases; however, the role of exercise in airway inflammation in asthma is poorly understood. We aimed to evaluate the effects of an aerobic training program on eosinophil inflammation (primary aim) and nitric oxide (secondary aim) in patients with moderate or severe persistent asthma. Methods: Sixty-eight patients randomly assigned to either control (CG) or aerobic training (TG) groups were studied during the period between medical consultations. Patients in the CG (educational program + breathing exercises; N = 34) and TG (educational program + breathing exercises + aerobic training; N = 34) were examined twice a week during a 3-month period. Before and after the intervention, patients underwent induced sputum, fractional exhaled nitric oxide (FeNO), pulmonary function, and cardiopulmonary exercise testing. Asthma symptom-free days were quantified monthly, and asthma exacerbation was monitored during 3 months of intervention. Results: At 3 months, decreases in the total and eosinophil cell counts in induced sputum (P = 0.004) and in the levels of FeNO (P = 0.009) were observed after intervention only in the TG. The number of asthma symptom-free days and (V) over dotO(2max) also significantly improved (P < 0.001), and lower asthma exacerbation occurred in the TG (P < 0.01). In addition, the TG presented a strong positive relationship between baseline FeNO and eosinophil counts as well as their improvement after training (r = 0.77 and r = 0.9, respectively). Conclusions: Aerobic training reduces sputum eosinophil and FeNO in patients with moderate or severe asthma, and these benefits were more significant in subjects with higher levels of inflammation. These results suggest that aerobic training might be useful as an adjuvant therapy in asthmatic patients under optimized medical treatment.
Resumo:
The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres` content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11 %] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Vascular remodeling is an important feature in asthma pathophysiology. Although investigations suggested that nitric oxide (NO) is involved in lung remodeling, little evidence established the role of inducible NO synthase (iNOS) isoform in bronchial vascular remodeling. The authors investigated if iNOS contribute to bronchial vascular remodeling induced by chronic allergic pulmonary inflammation. Guinea pigs were submitted to ovalbumin exposures with increasing doses (1 similar to 5 mg/mL) for 4 weeks. Animals received 1400W (iNOS-specific inhibitor) treatment for 4 days beginning at 7th inhalation. Seventy-two hours after the 7th inhalation, animals were anesthetized, mechanical ventilated, exhaled NO was collected, and lungs were removed and submitted to picrosirius and resorcin-fuchsin stains and to immunohistochemistry for matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-beta (TGF-beta). Collagen and elastic fiber deposition as well as MMP-9, TIMP-1, and TGF-beta expression were increase in bronchial vascular wall in ovalbumin-exposed animals. The iNOS inhibition reduced all parameters studied. In this model, iNOS inhibition reduced the bronchial vascular extracellular remodeling, particularly controlling the collagen and elastic fibers deposition in pulmonary vessels. This effect can be associated to a reduction on TGF-beta and on metalloproteinase-9/TIMP-1 vascular expression. It reveals new therapeutic strategies and some possible mechanism related to specific iNOS inhibition to control vascular remodeling.
Resumo:
Oral tolerance attenuates changes in in vitro lung tissue mechanics and extracellular matrix remodeling induced by chronic allergic inflammation in guinea pigs. J Appl Physiol 104: 1778-1785, 2008. First published April 3, 2008; doi:10.1152/japplphysiol.00830.2007.-Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.
Resumo:
We developed a model of severe allergic inflammation and investigated the impact of airway and lung parenchyma remodelling on in vivo and in vitro respiratory mechanics. BALB/c mice were sensitized and challenged with ovalbumin in severe allergic inflammation (SA) group. The control group (C) received saline using the same protocol. Light and electron microscopy showed eosinophil and neutrophil infiltration and fibrosis in airway and lung parenchyma, mucus gland hyperplasia, and airway smooth muscle hypertrophy and hyperplasia in SA group. These morphological changes led to in vivo (resistive and viscoelastic pressures, and static elastance) and in vitro (tissue elastance and resistance) lung mechanical alterations. Airway responsiveness to methacholine was markedly enhanced in SA as compared with C group. Additionally, IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid were higher in SA group. In conclusion, this model of severe allergic lung inflammation enabled us to directly assess the role of airway and lung parenchyma inflammation and remodelling on respiratory mechanics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: A significant proportion of patients with asthma have persistent symptoms despite treatment with inhaled glucocorticosteroids. Objective: We hypothesized that in these patients, the alveolar parenchyma is subjected to mast cell-associated alterations. Methods: Bronchial and transbronchial biopsies from healthy controls (n = 8), patients with allergic rhinitis (n = 8), and patients with atopic uncontrolled asthma (symptoms despite treatment with inhaled glucocorticosteroids; mean dose, 743 mu g/d; n = 14) were processed for immunohistochemical identification of mast cell subtypes and mast cell expression of Fc epsilon RI and surface-bound IgE. Results: Whereas no difference in density of total bronchial mast cells was observed between patients with asthma and healthy controls, the total alveolar mast cell density was increased in the patients with asthma (P < .01). Division into mast cell subtypes revealed that in bronchi of patients with asthma, tryptase positive mast cells (MC(T)) numbers decreased compared with controls (P <= .05), whereas tryptase and chymase positive mast cells (MC(TC)) increased (P <= .05). In the alveolar parenchyma from patients with asthma, an increased density was found for both MC(T) (P <= .05) and MC(TC) (P <= .05). The increased alveolar mast cell densities were paralleled by an increased mast cell expression of FceRI (P < .001) compared with the controls. The patients with asthma also had increased numbers (P < .001) and proportions (P < .001) of alveolar mast cells with surface-bound IgE. Similar increases in densities, FceRI expression, and surface-bound IgE were not seen in separate explorations of alveolar mast cells in patients with allergic rhinitis. Conclusion: Our data suggest that patients with atopic uncontrolled asthma have an increased parenchymal infiltration of MCT and MCTC populations with increased expression of FceRI and surface-bound IgE compared with atopic and nonatopic controls. (J Allergy Clin Immunol 2011;127:905-12.)
Resumo:
Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Background: Few studies have addressed small airway (SA) histopathological changes and their possible role in the remodeling process in idiopathic interstitial pneumonias. Objectives: To study morphological, morphometrical and immunohistochemical features of SA in idiopathic pulmonary fibrosis (usual interstitial pneumonia, UIP) and nonspecific interstitial pneumonia (NSIP). Methods: We analyzed SA pathology in lung biopsies from 29 patients with UIP and 8 with NSIP. Biopsies were compared with lung tissue from 13 patients with constrictive bronchiolitis (CB) as positive controls and 10 normal autopsied control lungs. We semi-quantitatively analyzed SA structure, inflammation, architectural features and the bronchiolar epithelial immunohistochemical expression of TGF-beta, MMP-2, 7, 9, and their tissue inhibitors (TIMP-1, 2). Results: Compared to controls, patients with UIP, NSIP and CB presented increased bronchiolar inflammation, peribronchiolar inflammation and fibrosis and decreased luminal areas. UIP patients had thicker walls due to an increase in most airway compartments. NSIP patients presented increased epithelial areas, whereas patients with CB had larger inner wall areas. All of the groups studied presented increased bronchiolar expression of MMP-7 and MMP-9, compared to the controls. Conclusion: We conclude that SAs are pathologically altered and may take part in the lung-remodeling process in idiopathic interstitial pneumonias. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Obstructive sleep apnea and hypertension are common conditions that frequently coexist. Continuous positive airway pressure (CPAP) reduces blood pressure in patients with obstructive sleep apnea and sustained hypertension. However, the impact of CPAP on patients with obstructive sleep apnea and prehypertension and masked hypertension, conditions associated with increased cardiovascular risk, is unknown. Thirty-six male patients (age, 43 +/- 7 years; body mass index, 28.8 +/- 3.0 kg/m(2)) with untreated severe obstructive sleep apnea (apnea-hypopnea index, 56 +/- 22 events/hr on polysomnography) with diagnostic criteria for prehypertension and/or masked hypertension, based on office and 24-hour ambulatory blood pressure monitoring, respectively, were studied. The patients randomized to no treatment (control; n=18) or CPAP (n=18) for 3 months had similar frequency of prehypertension and masked hypertension at study entry. There were no significant changes in blood pressure in patients randomized to the control group. In contrast, patients randomized to CPAP presented significant reduction in office systolic (from 126 +/- 5 to 121 +/- 7 mm Hg; P=0.001) and a trend for diastolic blood pressure (from 75 +/- 7 to 73 +/- 8 mm Hg; P=0.08) as well as a significant decrease in daytime and nighttime systolic and diastolic blood pressure (P < 0.05 for each comparison). There was a significant reduction in the frequency of prehypertension (from 94% to 55%; P=0.02) and masked hypertension (from 39% to 5%; P=0.04) only in the CPAP group. In conclusion, effective CPAP therapy promotes significant reduction in the frequency of prehypertension and masked hypertension by promoting significant blood pressure reductions in patients with severe obstructive sleep apnea. (Hypertension. 2011;57[part 2]:549-555.)
Resumo:
Objective. Chronic rhinosinusitis (CRS) is a risk factor for asthma exacerbations and is associated with greater clinical severity. Discrepancies may exist between CRS clinical diagnosis and data from paranasal sinus (PS) X-ray or computed tomography (CT) scans. The objective was to compare PS involvement using low-dose CT and plain X-ray in allergic asthmatic patients with rhinitis. Methods. Patients underwent PS radiography in the frontal and mentonian positions and low-dose CT consisting of six to eight coronal scans performed on the central region of the sphenoidal, ethmoidal, maxillary, and frontal sinuses. Possible results for each sinus were a normal aspect or the presence of mucosal thickening, opacification, and/or air-fluid level. Results. Eighty-five (93.4%) of 91 study patients had radiological changes on radiography or CT. In only six (6.6%) were both tests normal. The maxillary was the most involved sinus by both methods. Simultaneous PS abnormalities were observed in 40.5% on X-ray and 56.7% on CT. For the frontal, ethmoidal, and sphenoidal sinuses, the proportion of normal results differed significantly between X-ray and CT: 80.2% versus 89%, 76.9% versus 63.7% and 96.7% versus 70.3%, respectively (p <.05). Agreement was over 70% for the maxillary and frontal sinuses. CT also provided a better diagnosis of air-fluid level changes than X-ray. Conclusions. Low-dose CT significantly showed larger number of normal PS results and diagnosed more severe PS lesions. As the determination of true sinus severity lesion impacts in asthma control, low-dose CT may replace PS plain X-ray and conventional CT to support better clinical decisions.
Resumo:
We investigated the effects of salbutamol on the markers of epithelial function in a murine model of chronic allergic pulmonary inflammation by recording the ciliary beat frequency (CBF) and the transepithelial potential difference (PD) in vivo. Mice were sensitized and received four challenges of ovalbumin (OVA group) or 0.9% saline (control group). Forty-eight hours after the 4th inhalation, we observed eosinophilia in the bronchoalveolar lavage and epithelium remodeling with stored acid mucus in the OVA group (P < 0.001). No difference in the baseline CBF was noticed between the groups; however, the OVA group had a significantly lower baseline PD (P = 0.013). Salbutamol increased the CBF in all groups studied, and the dose response curve to salbutamol increased the PD in the OVA group from 10(-4) M to 10(-2) M. We suggest that salbutamol affects the CBF and the depth of the periciliary layer, which, in great part, determines the ability of the cilia to propel the mucus layer. This effect may have a positive impact on airway mucociliary transport in asthma and may have clinical implications. (C) 2011 Elsevier B.V. All rights reserved.