46 resultados para ALKANETHIOLATE MONOLAYERS
Resumo:
Nanostructured films comprising a 3-n-propylpyridiniunn silsesquioxane polymer (designated as SiPy(+)Cl(-)) and copper (II) tetrasulfophthalocyanine (CuTsPc) were produced using the Layer-by-Layer technique (LbL). To our knowledge this is the first report on the use of silsesquioxane derivative polymers as building blocks for nanostructured thin films fabrication. Deposition of the multilayers were monitored by UV-Vis spectroscopy revealing the linear increment in the absorbance of the Q-band from CuTsPc at 617 nm with the number of SiPy(+)Cl(-)/CuTsPc or CuTsPc/SiPy(+)Cl(-) bilayers. FTIR analyses showed that specific interactions between SiPy+Cl- and CuTsPc occurred between SO(3)(-) groups of tetrasulfophthalocyanine and the pyridinium groups of the polycation. Morphological studies were carried out using the AFM technique, which showed that the roughness and thickness of the films increase with the number of bilayers. The films displayed electroactivity and were employed to detection of dopamine (DA) and ascorbic acid (AA) using cyclic voltammetry, at concentrations ranging from 1.96 x 10(-4) to 1.31 x 10(-3) molL(-1). The number and the sequence of bilayers deposition influenced the electrochemical response in presence of DA and AA. Using differential pulse technique, films comprising SiPy(+)/CuTsPc were able to distinguish between DA and ascorbic acid (AA), with a potential difference of approximately with 500 mV, in the concentration range of 9.0 x 10(-5) to 2.0 x 10(-4) molL(-1), in pH 3.0.
Resumo:
Frutalin is a homotetrameric alpha-D-galactose (D-Gal)-binding lectin that activates natural killer cells in vitro and promotes leukocyte migration in vivo. Because lectins are potent lymphocyte stimulators, understanding the interactions that occur between them and cell surfaces can help to the action mechanisms involved in this process. In this paper, we present a detailed investigation of the interactions of frutalin with phospho- and glycolipids using Langmuir monolayers as biomembrane models. The results confirm the specificity of frutalin for D-Gal attached to a biomembrane. Adsorption of frutalin was more efficient for the galactose polar head lipids, in contrast to the one for sulfated galactose, in which a lag time is observed, indicating a rearrangement of the monolayer to incorporate the protein. Regarding ganglioside GM1 monolayers, lower quantities of the protein were adsorbed, probably due to the farther apart position of D-galactose from the interface. Binary mixtures containing galactocerebroside revealed small domains formed at high lipid packing in the presence of frutalin, suggesting that lectin induces the clusterization and the forming of domains in vitro, which may be a form of receptor internalization. This is the first experimental evidence of such lectin effect, and it may be useful to understand the mechanism of action of lectins at the molecular level. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical impedance spectroscopy (EIS) in pH 6.9 phosphate buffer solution was used to investigate each step of the procedure employed to modify a screen-printed electrode (SPE). The SPE was modified with self-assembled monolayers (SAMs) of cystamine (CYS, deposited from 20 mM solution), followed by glutaraldehyde (GA, 0.3 M solution). The Trypanosoma cruzi antigen was immobilized using different deposition times. The influence of incubation time (2-18 h) of protein was also investigated. The topography of modified electrode with this protein was investigated by atomic force microscopy (AFM). Interpretation of impedance data was based on physical and chemical adsorption, and degradation of the layer at high and meddle frequencies, and charge transfer reaction involving mainly the reduction of oxygen at low frequencies. EIS studies on modified electrodes with Tc85 protein immobilized for different incubation times indicated that the optimum incubation time was 6-8 h. It was demonstrated that EIS is a good technique to evaluate the different steps and the integrity of the surface modifications, and to optimize the incubation time of protein in the development of biosensors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Understanding the behavior of petroleum films at the air/water interface is crucial for dealing with oil sticks and reducing the damages to the environment, which has normally been attempted with studies of Langmuir films made of fractions of petroleum. However, the properties of films from whole petroleum samples may differ considerably from those of individual fractions, Using surface pressure and surface potential measurements and Brewster angle and fluorescence microscopy, we show that petroleum forms it nonhomogeneous Langmuir film at the air-water interface. The surface pressure isotherms for petroleum Langmuir films exhibit gas (G), liquid-expanded (LE), and liquid-condensed phases, with almost no hysteresis in the compression-decompression cycles. Domains formed upon compression from the G to the LE phase were accompanied by an increase in fluorescence intensity with excitation at 400-440 nm owing to an increase in the surface density of the chromophores in the petroleum film. The surface pressure and the fluorescence microscopy data pointed to self-assembling domains into a pseudophase in thermo-dynamic equilibrium with other less emitting petroleum components. This hypothesis was supported by Brewster angle microscopy images, whereby the appearance of water domains even at high surface pressures confirms the tendency of petroleum to stabilize emulsion systems. The results presented here suggest that, for understanding the interaction with water, it may be more appropriate to use the whole petroleum samples rather than its fractions.
Resumo:
The adsorption behavior of several amphiphilic polyelectrolytes of poly(maleic anhydride-alt-styrene) functionalized with naphthyl and phenyl groups, onto amino-terminated silicon wafer has been studied by means of null- ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The maximum of adsorption, Gamma(plateau), varies with the ionic strength, the polyelectrolyte structure and the chain length. Values of Gamma(plateau) obtained at low and high ionic strengths indicate that the adsorption follows the ""screening-reduced adsorption"" regime. Large aggregates were detected in solution by means of dynamic light scattering and fluorescence measurements. However. AFM indicated the formation of smooth layers and the absence of aggregates. A model based on a two-step adsorption behavior was proposed. In the first one, isolated chains in equilibrium with the aggregates in solution adsorbed onto amino-terminated surface. The adsorption is driven by electrostatic interaction between protonated surface and carboxylate groups. This first layer exposes naphtyl or phenyl groups to the solution. The second layer adsorption is now driven by hydrophobic interaction between surface and chains and exposes carboxylate groups to the medium, which repel the forthcoming chain by electrostatic repulsion. Upon drying some hydrophobic naphtyl or phenyl groups might be oriented to the air, as revealed by contact angle measurements. Such amphiphilic polyelectrolyte layers worked well for the building-up of multilayers with chitosan. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
STM and impedance results of the self-assembled monolayer (SAM) formed with thionicotinamide (TNA) on gold indicate the presence of defects that increase with the immersion time of the electrode in the TNA solution affecting the SAM electroactivity toward the electron transfer reaction of the cytochrome e metalloprotein and [Fe(CN)(6)](4-) and [Ru(NH(3))(6)](3+) complexes. It was observed that this electroactivity was also affected by the pH of the electrolyte solution. SERS and STM data indicate sulfur coordination to the surface with contribution of the NH(2) group. From the dependence of the TNA surface coverage on the temperature and concentration in solution, thermodynamic parameters of adsorption were determined.
Resumo:
In this work, the surface-enhanced Raman scattering (SERS) spectra of pyridine (py) on thin films of Co and Ni electrodeposited on an Ag electrode activated by oxidation-reduction cycles (ORC) are presented. The SERS spectra from the thin films were compared to those of py on activated bare transition metal electrodes. It was verified that the SERS spectra of py on 3 monolayers (ML)-thick films of Ni and Co presented only bands assignable to the py adsorbed on transition metal surfaces. It was also observed that even for 50 ML-thick transition metal films, the py SERS intensity was ca. 40% of the intensity from the 3 ML-thick films. The relative intensities of the SERS bands depended on the thickness of the films, and for films thicker than 7 ML for Co and 9 ML for Ni they were very similar to those of the bare transition metal electrodes. The transition metal thin films over Ag activated electrodes presented SERS intensities 3 orders of magnitude higher than the ones from bare transition metal electrodes. These films are more suitable to study the adsorption of low Raman cross-section molecules than are ORC-activated transition metal electrodes.
Resumo:
The present paper deals with the immobilization of redox mediators and proteins onto protected porous silicon surfaces to obtain their direct electrochemical reactions and to retain their bioactivities. This paper shows that MP-11 and viologens are able to establish chemical bonds with 3-aminopropyltriethoxylsilane-modified porous silicon surface. The functionalization of the surfaces have been fully characterized by energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) to examine the immobilization of these mediators onto the solid surface. Amperometric and open circuit potential measurements have shown the direct electron transfer between glucose oxidase and the electrode in the presence of the viologen mediator covalently linked to the 3-aminopropyltriethoxylsilane (APTES)-modified porous silicon surfaces.
Resumo:
A systematic and comprehensive study of the interaction of citrate-stabilized gold nanoparticles with triruthenium cluster complexes of general formula [Ru(3)(CH(3)COO)(6)(L)](+) [L = 4-cyanopyridine (4-CNpy), 4,4`-bipyridine (4,4`-bpy) or 4,4`-bis(pyridyl)ethylene (bpe)] has been carried out. The cluster-nanoparticle interaction in solution and the construction of thin films of the hybrid materials were investigated in detail by electronic and surface plasmon resonance (SPR) spectroscopy, Raman scattering spectroscopy and scanning electron microscopy (SEM). Citrate-stabilized gold nanoparticles readily interacted with [Ru(3)O(CH(3)COO)(6)(L)(3)](+) complexes to generate functionalized nanoparticles that tend to aggregate according to rates and extents that depend on the bond strength defined by the characteristics of the cluster L ligands following the sequence bpe > 4,4`-bpy >> 4-CNpy. The formation of compact thin films of hybrid AuNP/[Ru(3)O(CH(3)COO)(6)(L)(3)](+) derivatives with L = bpe and 4,4`-bpy indicated that the stability/lability of AuNP-cluster bonds as well as their solubility are important parameters that influence the film contruction process. Fluorine-doped tin oxide electrodes modified with thin films of these nanomaterials exhibited similar electrocatalytic activity but much higher sensitivity than a conventional gold electrode in the oxidation of nitrite ion to nitrate depending on the bridging cluster complex, demonstrating the high potential for the development of amperometric sensors.
Resumo:
Amino acids and self assembled monolayers (SAM`s) have been studied as to their inhibiting action on the corrosion of metallic materials. The objective of work is to study the electrochemical behavior of the cisteincisteine, the diphosfonate and the mixture of both in inhibiting the action of corrosion on stainless steel 304 in HCl 1 molL(-1). As the following techniques were used: open circuit potential (OCP), potenciostatic anodic polarization (A P), chronoamperomeny (CA), electrochemical impedance spectroscopy (EIS) and optical microscopy (OM). The results of CA showed that cisteine has a double effect, catalytic and inhibiting, in function of the immersion time of the metallic part in the electrolytic solution. AP curves have shown lesser current density for the system containing cisteine diphosfonate suggesting an inhibiting synergic action. These results have been confirmed by EIS and OM.
Resumo:
Polycarbonate membranes (PCM) of various pores sizes (400, 200, 100 and 50 nm) were used as templates for gold deposition. The electrodeposition from gold ions resulted in the formation of gold nanotubes when large pores size PCMs (400 and 200 nm) were used. On the other hand, gold nanowires were predominant for the PCMs with smaller pores size (100 and 50 nm). Surface-enhanced Raman scattering (SERS) from the probe molecule 4-mercaptopyridine (4-MPy) was obtained from all these nanostructures. The SERS efficiency of the substrates produced using the PC M templates were compared to two commonly used SERS platforms: a roughened gold electrode and gold nanostructures electrodeposited through organized polystyrene spheres (PSS). The SERS signal of the probe molecule increased as the pore diameter of the PCM template decreased. Moreover, the SERS efficiency from the nanostructures produced using 50 nm PCM templates was four and two times better than the signal from the roughened gold electrode and the PSS template, respectively. The SERS substrates prepared using PCM templates were more homogenous over a larger area (ca. 1 cm(2)), presented better spatial and sample to sample reproducibility than the other substrates. These results show that SERS substrates prepared using PCM templates are promising for the fabrication of planar SERS platforms for analytical/bioanalytical applications.
Pt monolayer electrocatalysts for O-2 reduction: PdCo/C substrate-induced activity in alkaline media
Resumo:
We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle`s surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O-2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O-2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate.
Resumo:
The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 x 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan delta of 3.9 x 10(-3)) and conductivity of 1.75 x 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being reversible. AFM images conducted directly onto the sensing units (Au IDE coated with 120 nm lignin PVD film) before and after the sensing experiments showed a decrease in the PVD film roughness from 5.8 to 3.2 nm after exposing to aniline.