439 resultados para Precision-recall analysis
Resumo:
The aim of this study was to investigate the influence of different crucible materials on the thermal analysis of binary systems. The thermal properties of two distinct solutions were measured both by Differential Scanning Calorimetry (DSC) and freeze-drying microscopy and the results were compared. The glass transition of the maximally freeze-concentrate (T (g)`) and the eutectic melting temperature (T (eut)) were not influenced by the crucible material. However the heat of fusion (Delta H) involved during the T (eut) as well as the Delta C (p) involved during the T (g)` of the solutions were affected.
Resumo:
In this preliminary study eighteen p-substituted benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazides with antimicrobial activity were evaluated against multidrug-resistant Staphylococcus aureus, correlating the three-dimensional characteristics of the ligands with their respective bioactivities. The computer programs Sybyl and CORINA were used, respectively, for the design and three-dimensional conversion of the ligands. Molecular interaction fields were calculated using GRID program. Calculations using Volsurf resulted in a statistically consistent model with 48 structural descriptors showing that hydrophobicity is a fundamental property in the analyzed biological response.
Resumo:
This paper reports a method for the analysis of secondary metabolites stored in glandular trichomes, employing negative ion `chip-based` nanospray tandem mass spectrometry. The analyses of glandular trichomes from Lychnophora ericoides, a plant endemic to the Brazilian `cerrado` and used in traditional medicine as an anti-inflammatory and analgesic agent, led to the identification of five flavonoids (chrysin, pinocembrin, pinostrobin, pinobanksin and 3-O-acetylpinobanksin) by direct infusion of the extracts of glandular trichomes into the nanospray ionisation source. All the flavonoids have no oxidation at ring B, which resulted in a modification of the fragmentation pathways compared with that of the oxidised 3,4-dihydroflavonoids already described in the literature. The absence of the anti-inflammatory and antioxidant di-C-glucosylflavone vicenin-2, or any other flavonoid glycosides, in the glandular trichomes was also demonstrated. The use of the,`chip-based` nanospray QqTOF apparatus is a new fast and useful tool for the identification of secondary metabolites stored in the glandular trichomes, which can be useful for chemotaxonomic studies based on metabolites from glandular trichomes. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
An enantioselective method using liquid-phase microextraction (LPME) followed by HPLC analysis was developed for the determination of oxybutynin (OXY) and its major metabolite N-desethyloxybutynin (DEO) in rat liver microsomal fraction. The LPME procedure was optimized using multifactorial experiments. Under the optimal extraction conditions, the mean recoveries were 61 and 55% for (R)-OXY and (S)-OXY, respectively. and 70 and 76% for (R)-DEO and (S)-DEO, respectively. The validated method was employed to an in vitro biotransformation study using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of OXY. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A selective method using three-phase liquid-phase microextraction (LPME) in conjunction with LC-MS-MS was devised for the enantioselective determination of chloroquine and its n-dealkylated metabolites in plasma samples. After alkalinization of the samples, the analytes were extracted into n-octanol immobilized in the pores of a polypropylene hollow fiber membrane and back extracted into the acidic acceptor phase (0.1 M TFA) filled into the lumen of the hollow fiber. Following LPME, the analytes were resolved on a Chirobiotic V column using methanol/ACN/glacial aceti acid/diethylamine (90:10:0.5:0.5 by volume) as the mobile phase. The MS detection was carried out using multiple reaction monitoring with ESI in the positive ion mode. The optimized LPME method yielded extraction recoveries ranging from 28 to 66%. The method was linear over 5 - 500 ng/mL and precision (RSD) and accuracy (relative error) values were below 15% for all analytes. The developed method was applied to the determination of the analytes in rat plasma samples after oral administration of the racemic drug.
Resumo:
Cylindrospermopsin (CYN) belongs to a group of toxins produced by several strains of freshwater cyanobacteria. It is a compact zwitterionic molecule composed of a uracil section and a tricyclic guanidinium portion with a primarily hepatotoxic effect. Using low multi-stage and high-resolution mass spectrometry, the gas-phase reactions of this toxin have been investigated. Our data show that collision-induced dissociation (CID) spectra of CYN are dominated by neutral losses, and three major initial fragmentation pathways are clearly distinguishable. Interestingly, comparative analysis of protonated and cationizated molecules showed a significant difference in the balance of the SO(3) and terminal ring elimination. These data indicate that the differential ion mobility of H(+), Li(+), Na(+) and K(+) leads to different fragmentation pathways, giving rise to mass spectra with different profiles. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The purpose of this study was to develop a method for the stereoselective analysis of thioridazine-2-sulfoxide (THD-2-SO) and thioridazine-5-sulfoxide (THD-5-SO) in culture medium and to study the biotransformation of rac-thioridazine (THD) by some endophytic fungi. The simultaneous resolution of THD-2-SO and THD-5-SO diastereoisomers was performed on a CHIRALPAK(R) AS column using a mobile phase of hexane: ethanol: methanol (92:6:2, v/v/v) + 0.5% diethylamine; UV detection was carried out at 262 nm. Diethyl ether was used as extractor solvent. The validated method was used to evaluate the biotransformation of THD by 12 endophytic fungi isolated from Tithonia diversifolia, Viguiera arenaria and Viguiera robusta. Among the 12 fungi evaluated, 4 of them deserve prominence for presenting an evidenced stereoselective biotransformation potential: Phomopsis sp. (TD2) presented greater mono-2-sulfoxidation to the form (S)-(SE) (12.1%); Glomerella cingulata (VA1) presented greater mono-5-sulfoxidation to the forms (S)-(SE) + (R)-(FE) (10.5%); Diaporthe phaseolorum (VR4) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(FE) (84.4% and 82.5%, respectively) and Aspergillus fumigatus (VR12) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(SE) (31.5% and 34.4%, respectively). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of Clr has been observed to occur concomitantly with deficiency in Cls and 9 out of 15 reported cases presented systemic lupus erythernatosus (SLE). Here, we describe a family in which all four children are deficient in Cls but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children`s sera. Cls was undetectable, while in the parents` sera it was lower than in the normal controls. The levels of Clr observed in the siblings and parents sera were lower than in the control, while the concentrations of other complement proteins (C3, C4, MBL and MASP-2) were normal in all family members. Impairment of Cls synthesis was observed in the patients` fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the Cls cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of Cls mRNA transcripts in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3` splice site within intron I which increases the size of exon 2 by 87 nucleotides. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Lychnophora ericoides Mart. (Asteraceae, Vernonieae) is a plant, endemic to Brazil, with occurrence restricted to the ""cerrado"" biome. Traditional medicine employs alcoholic and aqueous-alcoholic preparations of leaves from this species for the treatment of wounds, inflammation, and pain. Furthermore, leaves of L. ericoides are also widely used as flavorings for the Brazilian traditional spirit ""cachaca"". A method has been developed for the extraction and HPLC-DAD analysis of the secondary metabolites of L. ericoides leaves. This analytical method was validated with 11 secondary metabolites chosen to represent the different classes and polarities of secondary metabolites occurring in L. ericoides leaves, and good responses were obtained for each validation parameter analyzed. The same HPLC analytical method was also employed for online secondary metabolite identification by HPLC-DAD-MS and HPLC-DAD-MS/MS, leading to the identification of di-C-glucosylflavones, coumaroylglucosylflavonols, flavone, flavanones, flavonols, chalcones, goyazensolide, and eremantholide-type sesquiterpene lactones and positional isomeric series of chlorogenic acids possessing caffeic and/or ferulic moieties. Among the 52 chromatographic peaks observed, 36 were fully identified and 8 were attributed to compounds belonging to series of caffeoylferuloylquinic and diferuloylquinic acids that could not be individualized from each other.
Resumo:
An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The purpose of this study was the development and validation of an LC-MS-MS method for simultaneous analysis of ibuprofen (IBP), 2-hydroxyibuprofen (2-OH-IBP) enantiomers, and carboxyibuprofen (COOH-IBP) stereoisomers in fungi culture medium, to investigate the ability of some endophytic fungi to biotransform the chiral drug IBP into its metabolites. Resolution of IBP and the stereoisomers of its main metabolites was achieved by use of a Chiralpak AS-H column (150 x 4.6 mm, 5 mu m particle size), column temperature 8 degrees C, and the mobile phase hexane-isopropanol-trifluoroacetic acid (95: 5: 0.1, v/v) at a flow rate of 1.2 mL min(-1). Post-column infusion with 10 mmol L(-1) ammonium acetate in methanol at a flow rate of 0.3 mL min(-1) was performed to enhance MS detection (positive electrospray ionization). Liquid-liquid extraction was used for sample preparation with hexane-ethyl acetate (1:1, v/v) as extraction solvent. Linearity was obtained in the range 0.1-20 mu g mL(-1) for IBP, 0.05-7.5 mu g mL(-1) for each 2-OH-IBP enantiomer, and 0.025-5.0 mu g mL(-1) for each COOH-IBP stereoisomer (r >= 0.99). The coefficients of variation and relative errors obtained in precision and accuracy studies (within-day and between-day) were below 15%. The stability studies showed that the samples were stable (p > 0.05) during freeze and thaw cycles, short-term exposure to room temperature, storage at -20 degrees C, and biotransformation conditions. Among the six fungi studied, only the strains Nigrospora sphaerica (SS67) and Chaetomium globosum (VR10) biotransformed IBP enantioselectively, with greater formation of the metabolite (+)-(S)-2-OH-IBP. Formation of the COOH-IBP stereoisomers, which involves hydroxylation at C3 and further oxidation to form the carboxyl group, was not observed.
Resumo:
Thioridazine (THD) is a commonly prescribed phenotiazine neuroleptic drug, which is extensively biotransformed in the organism producing as main metabolites sulfoxides and a sulfone by sulfur oxidation Significant differences have been observed in the activity of the THD enantiomers as well as for its main metabolites, and enantioselectivity phenomena have been proved in the metabolic pathway. Here the assignment of the absolute configuration at the sulfur atom of enantiomeric THD-2-sulfoxide (THD-2-SO) has been carried out by circular dichroism (CD) spectroscopy The stereoisomers were separated by HPLC on Chiralpak AS column, recording the CD spectra for the two collected enantiomeric fractions The theoretical electronic CD spectrum has been obtained by the TDDFT/B3LYP/6-31G*. as Boltzmann averaging of the contributions calculated for the most stable conformations of the drug The comparison of the simulated and experimental spectra allowed the absolute configuration at the sulfur atom of the four THD-2-SO stereoisomers to be assigned The developed method should be useful for a reliable correlation between stereochemistry and activity and/or toxicity
Resumo:
The flavone C-glucoside, vicenin-2, in semi-purified extracts of the leaves of Lychnophora ericoides was quantified in rat plasma samples using a method based on reversed-phase high performance liquid chromatography coupled to tandem mass spectrometry. Vicenin-2 was analyzed on a LiChrospher (R) RP18 column using an isocratic mobile phase consisting of a mixture of methanol: water (30:70, v/v) plus 2.0% glacial acetic acid at a flow rate of 0.8 mL min(-1). Genistein was used as internal standard. The mass spectrometer was operated in positive ionization mode and analytes were quantified by multiple reaction monitoring at m/z 595 > 457 for vicenin-2 and m/z 271 > 153 for internal standard. Prior to the analysis, each rat plasma sample was acidified with 200 mu L of 50 mmol L(-1) acetic acid solution and extracted by solid-phase extraction using a C18 cartridge. The absolute recoveries were reproducible and the coefficients of variation values were lower than 5.2%. The method was linear over the 12.5 - 1500 ng mL(-1) concentration range and the quantification limit was 12.5 ng mL(-1). Within-day and between-day assay precision and accuracy were studied at three concentration levels (40, 400 and 800 ng mL(-1)) and were lower than 15%. The developed and validated method seems to be suitable for analysis of vicenin-2 in plasma samples obtained from rats that receive a single i.p. dose of 200 mg kg(-1) vicenin-2 extract.
Resumo:
Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.