479 resultados para Neurosciences cognitives


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LOB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LOB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ventral medial prefrontal cortex (vMPFC) has direct connections to subcortical, diencephalic and brainstem structures that have been closely related to depression. However, studies aimed at investigating the role of the vMPFC in the neurobiology of depression have produced contradictory results. Moreover, the precise involvement of vMPFC anatomic subdivisions, the prelimbic(PL) and the infralimbic (IL) cortices, in regulating depressive-like behavior have been poorly investigated. The forced swimming test (FST) is a widely employed animal model aimed at detecting antidepressant-like effects. Therefore, to further investigate a possible involvement of the vMFPC in depressive-like behavior, rats bilaterally implanted with cannulae aimed at the PL or IL prefrontal cortices were submitted to 15 min of forced swimming (pre-test) followed, 24 h later, by a 5-min swimming session (test), where immobility time was registered. Synaptic transmission in these regions was temporarily inhibited using local microinjection of cobalt chloride at different periods of the experimental procedure (before or after the pre-test or before the test). PL inactivation decreased immobility time independently of the time of the injection. In the IL inactivation induced a significant antidepressant-like effect when performed immediately before the pre-test or before the test, but not after the pre-test. These results suggest that activation of the vMPFC is important for the behavioral changes observed in rats submitted to the FST. They further indicate that, although both the PL and IL cortices are involved in these effects, they may play different roles. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of neuroendocrine and cardiovascular control The PVN contains parvocellular neurons that release the corticotrophin release ha mone (CRH) under stress situations In addition this brain area is connected to several limbic structures implicated in defensive behavioral control as well to forebrain and brainst m structures involved in cardiovascular control Acute restraint is an unavoidable stress situation that evokes corticosterone release as well as marked autonomic changes the latter characterized by elevated mean arterial pressure (MAP) intense heart rate (HR) Increases and decrease in the tail temperature We report the effect of PVN inhibition on MAP and HR responses corticosterone plasma levels and tail temperature response during acute restraint in rats Bilateral microinjection of the nonspecific synaptic blocker CoCl(2) (1 mM/100 nL) into the PVN reduced the pressor response it inhibited the increase in plasma corticosterone concentration as well as the fall in tail temperature associated with acute restraint stress Moreover bilateral microinjection of CoCl(2) into areas surrounding the PVN did not affect the blood pressure hormonal and tail vasoconstriction responses to restraint stress The present results show that a local PVN neurotransmission is involved in the neural pathway that controls autonomic and neuroendocrine responses which are associated with the exposure to acute restraint stress (C) 2010 Elsevier B V All rights reservi.d

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of 5-HT1A receptors in the dorsal periaqueductal gray (dPAG) impairs escape behavior, suggesting a panicolytic-like effect. Cannabidiol (CBD), a major non-psychotomimetic compound present in Cannabis sativa, causes anxiolytic-like effects after intra-dPAG microinjections by activating 5-HT1A receptors. In the present work we tested the hypothesis that CBD could also impair escape responses evoked by two proposed animal models of panic: the elevated T-maze (ETM) and electric stimulation of dPAG. In experiment 1 male Wistar rats with a single cannula implanted in the dPAG received a microinjection of CBD or vehicle and, 10 min later, were submitted to the ETM and open field tests. In experiment 2 escape electrical threshold was measured in rats with chemitrodes implanted in the dPAG before and 10 min after CBD microinjection. In experiment 3 similar to experiment 2 except that the animals received a previous intra-dPAG administration of WAY-100635, a 5-HT1A receptor antagonist, before CBD treatment. In the ETM microinjection of CBD into the dPAG impaired inhibitory avoidance acquisition, an anxiolytic-like effect, and inhibited escape response, a panicolytic-like effect. The drug also increased escape electrical threshold, an effect that was prevented by WAY-100635. Together, the results suggest that CBD causes panicolytic effects in the dPAG by activating 5-HT1A receptors. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypnea cervicornis agglutinin (HCA), a lectin isolated from the red marine alga has been previously shown to have an antinociceptive effect. In the present study in rats, mechanisms of action of HCA were addressed regarding mechanical hypernociception induced by carrageenan, ovalbumin (as antigen), and also by prostaglandin E(2) in rats. The lectin administered intravenously inhibited carrageenan- and antigen-induced hypernociception at 1,3, 5 and 7 h. This inhibitory effect was completely prevented when lectin was combined with mucin, demonstrating the role of carbohydrate-binding sites. The inhibition of inflammatory hypernociception by HCA was associated with the prevention of neutrophil recruitment to the plantar tissue of rats but was not associated with the inhibition of the release of pro-hypernociceptive cytokines (TNF-alpha, IL-1 beta and CINC-1). HCA also blocked mechanical hypernociception induced by PGE(2), which was prevented by the administration of nitric oxide synthase inhibitors. These results were corroborated by the increased circulating levels of NO metabolites following HCA treatment. These findings suggest that the anti-hypernociceptive effects of HCA are not associated with the inhibition of pro-inflammatory cytokine production. However, these effects seem to involve the inhibition of neutrophil migration and also the increase in NO production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ventral portion of the medial prefrontal cortex (vMPFC) has been related to the expression of contextual fear conditioning. This study investigated the possible involvement of CB(1) receptors in this aversive response. Male Wistar rats were submitted to a contextual aversive conditioning session and 48 h later re-exposed to the aversive context in which freezing and cardiovascular responses (increase of arterial pressure and heart rate) were recorded. The expression of CB(1) receptor-mRNA in the vMPFC was also measured using real time-PCR. In the first experiment intra-vMPFC administration of the CB(1) receptor agonist anandamide (AEA, 5 pmol/200 nl) or the AEA transport inhibitor AM404 (50 pmol/200 nl) prior to re-exposure to the aversive context attenuated the fear-conditioned responses. These effects were prevented by local pretreatment with the CB(1) receptor antagonist AM251 (100 pmol/200 nl). Using the same conditioning protocol in another animal group, we observed that CB(1) receptor mRNA expression increased in the vMPFC 48 h after the conditioning session. Although AM251 did not cause any effect by itself in the first experiment, this drug facilitated freezing and cardiovascular responses when the conditioning session employed a lesser aversive condition. These results indicated that facilitation of cannabinoid-mediated neurotransmission in the vMPFC by local CB(1) receptor activation attenuates the expression of contextual fear responses. Together they suggest that local endocannabinoid-mediated neurotransmission in the vMPFC can modulate these responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical stimulation of the lateral nucleus of the habenula (LHb), an area implicated in the regulation of serotonergic activity in raphe nuclei, affects the acquisition of inhibitory avoidance and escape expression of rats submitted to the elevated T-maze test of anxiety. Here, we investigated whether facilitation of 5-HT-mediated neurotransmission in the dorsal periaqueductal gray (dPAG) accounts for the behavioral consequences in the elevated T-maze induced by chemical stimulation of the LHb. The dPAG in the midbrain, which is innervated by 5-HT fibers originating from the dorsal raphe nucleus (DRN), has been consistently implicated in the genesis/regulation of anxiety- and fear-related defensive responses. The results showed that intra-dPAG injection of WAY-100635 or ketanserin, 5-HT(1A) and 5-HT(2A/2C) receptor antagonists, respectively, counteracted the anti-escape effect caused by bilateral intra-LHb injection of kainic acid (60 pmol/0.2 mu l). Ketanserin, but not WAY-100635, blocked kainic acid`s facilitatory effect on inhibitory avoidance acquisition. Overall, the results suggest that the pathway connecting the LHb to the DRN is involved in the control of 5-HT release in the dPAG, and facilitation of 5-HT-mediated neurotransmission in the latter area distinctively impacts upon the expression of anxiety- and fear-related defensive behaviors. While stimulation of 5-HT(1A) receptors selectively affects escape performance, 5-HT(2A/2C) receptors modulate both inhibitory avoidance and escape. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a major nonpsychotomimetic component of Cannabis sativa that has been shown to have an anxiolytic effect in human and animal models. Earlier studies suggest that these effects involve facilitation of serotonin, a neurotransmitter that has also been related to obsessive-compulsive disorder. On the basis of this evidence, this study investigated the effects of CBD in C57BL/6J mice submitted to the marble-burying test (MBT), an animal model proposed to reflect compulsive behaviour. CBD (15, 30 and 60 mg/kg) induced a significant decrease in the number of buried marbles compared with controls (34, 41 and 48%, respectively). A similar, although larger, decrease was also found after the serotonin selective reuptake inhibitor paroxetine (10 mg/kg, 77% decrease) and the benzodiazepine diazepam (2.5 mg/kg, 84% decrease). The effect of CBD (30 mg/kg) was still significant after 7 days of daily repeated administration, whereas the effect of diazepam disappeared. Pretreatment with WAY100635 (3 mg/kg), a 5HT1A receptor antagonist, prevented the effects of paroxetine but failed to alter those of CBD. These latter effects, however, were prevented by pretreatment with the CB1 receptor antagonist AM251 (1 mg/kg). These results indicated that CBD and paroxetine decrease the number of buried marbles in the MBT through distinct pharmacological mechanisms. They also suggest a potential role of drugs acting on the cannabinoid system in modulating compulsive behaviour. Behavioural Pharmacology 21: 353-358 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wealth of evidence suggests a role for brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) in the aetiology of depression and in the mode of action of antidepressant drugs. Less clear is the involvement of this neurotrophin in other stress-related pathologies such as anxiety disorders. The dorsal periaqueductal grey matter (DPAG), a midbrain area rich in BDNF and TrkB receptor mRNAs and proteins, has been considered a key structure in the pathophysiology of panic disorder. In this study we investigated the effect of intra-DPAG injection of BDNF in a proposed animal model of panic: the escape response evoked by the electrical stimulation of the same midbrain area. To this end, the intensity of electrical current that needed to be applied to DPAG to evoke escape behaviour was measured before and after microinjection of BDNF. We also assessed whether 5-HT- or GABA-related mechanisms may account for the putative behavioural/autonomic effects of the neurotrophin. BDNF (0.05, 0.1, 0.2 ng) dose-dependently inhibited escape performance, suggesting a panicolytic-like effect. Local microinjection of K252a, an antagonist of TrkB receptors, or bicuculline, a GABA(A) receptor antagonist, blocked this effect. Intra-DPAG administration of WAY-100635 or ketanserin, respectively 5-HT(1A) and 5-HT(2A/2c) receptor antagonists, did not alter BDNF`s effects on escape. Bicuculline also blocked the inhibitory effect of BDNF on mean arterial pressure increase caused by electrical stimulation of DPAG. Therefore, in the DPAG, BDNF-TrkB signalling interacts with the GABAergic system to cause a panicolytic-like effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute restraint is an unavoidable stress situation that evokes marked and sustained cardiovascular changes, which are characterized by blood pressure and heart rate increases. In the present study, we tested the hypothesis that insular cortex mediates cardiovascular responses to acute restraint stress in rats. To that purpose, the insular cortex synaptic transmission was inhibited by bilateral microinjection of the nonselective synaptic blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Insular cortex pretreatment with CoCl(2) decreased restraint-evoked pressor and tachycardiac responses, thus indicating an involvement of synapses within the insular cortex on the modulation of cardiovascular responses to restraint stress. The present results indicate that insular cortex synapses exert a facilitatory influence on blood pressure and HR increase evoked by acute restraint stress in rats. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although several pieces of evidence indicate that the endocannabinoid system modulates anxiety-like behaviors and stress adaptation, few studies have investigated the brain sites of these effects. The ventral hippocampus (VHC) has been related to anxiety behaviors and has a high expression of cannabinoid-1 (CBI) receptors. Moreover, endocannabinoid signaling in the hippocampus is proposed to regulate stress adaptation. In the present study we investigated the role of previous stressful experience on the effects of AM404, an anandamide uptake inhibitor, microinjected into the VHC of rats submitted to the elevated plus maze (EPM), a widely used animal model of anxiety. Stressed animals were forced restrained for two h 24 h before the test. AM404 (5-50 pmol) microinjection promoted an anxiogenic-like effect in non-stressed rats but decreased anxiety in stressed animals. AM251 (0.01 to 1000 pmol), a CBI receptor antagonist, failed to change behavior in the EPM over a wide dose range but prevented the effects of AM404. Anxiolytic-like effects of AM404 (5 pmol) intra-VHC injection were also observed in the Vogel conflict test (VCT), another model of anxiety that involves previous exposure to stressful situations (48 h of water deprivation). These results suggest that facilitation of endocannabinoid system neurotransmission in the ventral hippocampus modulates anxiety-like behaviors and that this effect depends on previous stress experience. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the evidence that the lateral septal area (LSA) modulates defensive responses, the aim of the present study is to verify if this structure is also involved in contextual fear conditioning responses. Neurotransmission in the LSA was reversibly inhibited by bilateral microinjections of cobalt chloride (CoCl(2), 1 mM) 10 min before or after conditioning or 10 min before re-exposure to the aversively conditioned chamber. Only those animals that received CoCl(2) before re-exposure showed a decrease in both cardiovascular and behavioral conditioned responses. These results suggest that the LSA participates in the expression, but not acquisition or consolidation, of contextual fear conditioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Systemic administration of cannabidiol (CBD), a non-psychotomimetic component of Cannabis sativa, is able to attenuate cardiovascular and behavioral (freezing) changes induced by re-exposure to a context that had been previously paired with footshocks. The brain sites mediating this effect, however, remain unknown. The medial prefrontal cortex (mPFC) has been related to contextual fear conditioning. Objectives: (1) To verify, using c-Fos immunocytochemistry, if the mPFC is involved in the attenuation of contextual fear induced by systemic administration of CBD; (2) to investigate if direct microinjections of CBD into mPFC regions would also attenuate contextual fear. Results: Confirming previous results systemic administration of CBD (10 mg/kg) decreased contextual fear and associated c-Fos expression in the prefrontal cortex (prelimbic and infralimbic regions). The drug also attenuated c-Fos expression in the bed nucleus of the stria terminalis (BNST). Direct CBD (30 nmol) microinjection into the PL prefrontal cortex reduced freezing induced by re-exposure to the aversively conditioned context. In the infralimbic (IL) prefrontal cortex, however, CBD (30 nmol) produced an opposite result, increasing the expression of contextual fear conditioning. This result was confirmed by an additional experiment where the conditioning session was performed under a less aversive protocol. Conclusion: These results suggest that the PL prefrontal cortex may be involved in the attenuation of contextual fear induced by systemic injection of CBD. They also support the proposition that the IL and PL play opposite roles in fear conditioning. A possible involvement of the BNST in CBD effects needs to be further investigated. (C) 2009 Elsevier B.V. All rights reserved.