336 resultados para internal defence system
Resumo:
Objective: To introduce a new coupling system between screw driver and interference screw, and biomechanical tests that validate the safety of its application. Methods: The new system was submitted to biomechanical torsion assays. Two types of analysis were performed: maximum torque of manual insertion of the screws into bovine bone; destructive assays of torsion of the system using an INSTRON 55MT machine. The same tests were also performed on a control group, using a commercially available interference screw coupling system (Acufex (R)). Results: In the tests on manual insertion of screws in bovine femurs, the average values found with a digital torque meter were 1.958 N/m for Acufex (R) and 2.563 N/m for FMRP. Considering p>0.05, there were no statistical differences between the two groups (p=0.02) in the values for maximum torque of insertion, in the two systems studied. The average values for maximum torque of torsion resisted by the screw were 15N/m for the Acufex (R) screw and 13N/m for the FMRP screw, again with no statistical differences between the two groups (p>0.05). In the evaluation of angular deformation, there was also no significant difference between the two screw types (p=0.15). Conclusion: The new coupling system for interference screws developed at FMRP-USP revealed a torsion resistance that is comparable with the system already available on the market and regulated for international use.
Resumo:
Introduction: The vertebrae fixation system using pedicular screws is one of the most efficient methods to treat vertebral spine pathologies. When the screw is submitted to pullout strength, it causes internal tension near the medullar canal and this situation can be analyzed by using the photoelasticity technique. Objective: Were analyzed those internal tensions near the medullar canal of photoelastic vertebra models using different sizes of screws of the vertebral fixation system submitted to pullout strength. Methods: A lumbar vertebral model made of photoelastic material with three different USS1-type pedicular screw sizes (5, 6, and 7 mm) was used. The internal tensions around the screw were tested in 12 predetermined points by a plain transmission polaroscope. Results: The areas of greater tension concentration were between the medullar canal and the curves of the transverse process. Comparing the maximum average pulling tension, statistical differences were observed between screws 5 and 7, and 6 and 7. On the other hand, for screws 5 and 6, there were no significant differences. Conclusion: The study evidenced that the internal tensions are greater in irregular areas, next to the medullar canal, showing that this is a critical region.
Resumo:
The RAS (renin angiotensin system) is classically involved in BP (blood pressure) regulation and water electrolyte balance, and in the central nervous system it has been mostly associated with homoeostatic processes, such as thirst, hormone secretion and thermoregulation. Epilepsies are chronic neurological disorders characterized by recurrent epileptic seizures that affect 1-3% of the world`s population, and the most commonly used anticonvulsants are described to be effective in approx. 70% of the population with this neurological alteration. Using a rat model of epilepsy, we found that components of the RAS, namely ACE (angiotensin-converting enzyme) and the AT(1) receptor (angiotensin II type I receptor) are up-regulated in the brain (2.6- and 8.2-fold respectively) following repetitive seizures. Subsequently, epileptic animals were treated with clinically used doses of enalapril, an ACE inhibitor, and losartan, an AT(1) receptor blocker, leading to a significant decrease in seizure severities. These results suggest that centrally acting drugs that target the RAS deserve further investigation as possible anticonvulsant agents and may represent an additional strategy in the management of epileptic patients.
Resumo:
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-gamma and iNOS expression in the CNS compared to BALB/c mice. The CNS of C578L/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)
Resumo:
Nematode parasites from the genus Strongyloides spp. are important pathogens of the intestinal mucosa of animals and humans. Their complex life cycles involve alternating developmental adaptations between larvae stages and the adult parthenogenetic female. Here, we report, primarily through homology-based searching, the existence of the major components of the ubiquitin-proteasome system in this genus, using the available EST data from S. ratti, S. stercoralis, and Parastrongyloides trichosuri. In this study, S. venezuelensis was used as our model organism for detection of proteasome activity and ubiquitinated substrates in cytosolic preparations from the L3 larvae and the adult female. Marked differences in proteasome capabilities were found when these two stages were compared. A preference for degradation of chymotryptic synthetic peptides was found in both stages with the adult exhibiting a higher rate of hydrolysis compared to the larvae. Due to the high evolutionary conservation of proteasome alpha subunits, an anti-human proteasome antibody was able to recognize proteasome subunits in these preparations by Western blotting, supporting the proposal that the activity of the ubiqutin-proteasome system is developmentally regulated in this nematode.
Resumo:
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.
Resumo:
The general description of kinins refers to these peptides as molecules involved in vascular tone regulation and inflammation. Nevertheless, in the last years a series of, evidences has shown that local hormonal systems, such as the kallikrein-kinin system, may be differently regulated and are of pivotal importance to pathophysiological control. The combined interpretations of many recent studies allow us to conclude that the kallikrein-kinin system plays broader and richer roles than those classically described until recently. In this review, we report findings concerning the participation of the kallikrein-kinin system in inflammation, cancer, and in pathologies related to cardiovascular, renal and central nervous systems. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pulmonary abnormalities are observed in chronic hepatopathy. The measurement of the maximum inspiratory and expiratory pressure may evaluate lung function and the risks associated with hepatic transplantation. Thus, the present work sought to evaluate the respiratory muscle strength of 29 patients between 17 and 63 years old who were enrolled for liver transplantation. The patients were classified according to Child-Turcotte-Pugh score as A, B, or C, and also according to a physiotherapeutic evaluation, which included measurement of respiratory muscle strength by means of a digital manovactrometer, which determines the maximum inspiratory pressure (MaxIP) and the maximum expiratory pressure (MaxEP). The tests were performed with seated individuals having their nostrils obstructed by a nasal clip. The MaxIP was measured during the effort initiated in the residual volume, whereas the MaxEP was measured during the effort initiated in the total pulmonary capacity, keeping pressures stable for at least 1 second. The statistical analysis was performed through using the Mann-Whitney test with a 5% level of significance. The MaxIP values of Child A 95.5 +/- 40.507 cm H2O (average +/- DP) and Child B 87.2 +/- 35.02 patients were higher than those for Child C patients (34.83 +/- 3.68; P <.05). Similar results were observed for the MaxEP of Child A and B groups (116.25 +/- 31.98 and 97.28 +/- 31.08, respectively; P <.05), versus the Child C group (48.16 +/- 22.60). Between groups A and B, the MaxEP were similar (P >.05). We concluded that Child C patients display muscle weakness significantly greater than that of subjects classified as Child A or B.
Resumo:
The larynx is the most common site of malignancy in the upper aerodigestive tract. In Brazil, malignant laryngeal lesions represent 2% of all cancers, with similar to 3000 annual deaths. The association between human papillomavirus (HPV) and laryngeal cancer is still controversial. The aim of the present retrospective study was to determine the expression of galectin-3 immunoperoxidase in laryngeal carcinoma by examining paraffin-em bedded larynx biopsies from 65 patients, 10 in situ laryngeal carcinomas, 27 laryngeal carcinomas without metastases, and 28 with metastases. Twenty-eight cervical lymph nodes from patients with metastatic lesions were also evaluated. Nested PCR was performed to detect and type HPV DNA. Galectin-3 expression was assessed by immunohistochemistry using a computer-assisted system. Among 65 patients, 55 (84.6%)were positive to beta-globin (internal control); 10 (15.4%) patients were beta-globin negative and were excluded from the HPV evaluation. Thus, 7 (12.7%) out of 55 patients were HPV positive and 48 (87.3%) out of 55 patients were HPV negative. High expression of galectin-3 was observed in invasive laryngeal tumors, suggesting that galectin-3 could be associated with the invasiveness and aggressiveness of laryngeal carcinomas. (J Histochem Cytochem 57:665-673, 2009)
Resumo:
Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer. Exp Biol Med 234:802-812, 2009
Resumo:
Study Design. In vitro biomechanical investigation of the screw-holding capacity. Objective. To evaluate the effect of repetitive screw-hole use on the insertional torque and retentive strength of vertebral system screws. Summary and Background Data. Placement and removal of vertebral system screws is sometimes necessary during the surgical procedures in order to assess the walls of the pilot hole. This procedure may compromise the holding capacity of the implant. Methods. Screws with outer diameter measuring 5, 6, and 7 mm were inserted into wood, polyurethane, polyethylene, and cancellous bone cylindrical blocks. The pilot holes were made with drills of a smaller, equal, or wider diameter than the inner screw diameter. Three experimental groups were established based on the number of insertions and reinsertions of the screws and subgroups were created according to the outer diameter of the screw and the diameter of the pilot hole used. Results. A reduction of screw-holding capacity was observed between the first and the following insertions regardless the anchorage material. The pattern of reduction of retentive strength was not similar to the pattern of torque reduction. The pullout strength was more pronounced between the first and the last insertions, while the torque decreased more proportionally from the first to the last insertions. Conclusion. Insertion and reinsertion of the screws of the vertebral fixation system used in the present study reduced the insertion torque and screw purchase.
Resumo:
In the present study, we evaluated the kinin system components in the plasma of patients with systemic lupus erythematosus exhibiting mucocutaneous lesions. Fifteen women with active cutaneous lupus (P) and 15 normal healthy women (C) were studied. Low molecular (LKg) and high molecular (HKg) weight kininogen were determined by ELISA (expressed mu g Bk/ml). The activities of tissue kallikrein (TKal), plasma kallikrein (PKal) and kininase II were assayed by their action on selective substrates. Statistical analysis was performed using the Mann-Whitney test. The patients presented increased plasma levels of LKg (P = 2.98, C = 0.79) and HKg (P = 1.78, C = 0.5) associated with the increased activity of PKal (P = 2.50, C = 1.63 U/ml), TKal (P = 1.87, C = 1.30 mu M pNa/ml) and kininase II (P = 1.50, C = 0.51 mu M Hys-Leu/ml), when compared to the values observed in the control group (P < 0.0001 for each comparison). Thus, the increased concentration of all parameters of the kinin system in these patients indicate an overactivity of the kinin system in the acute phase of lupus, corroborating with the participation of these mediators in lupus pathogenesis.
Resumo:
Introduction. Diabetes is a risk factor for female sexual dysfunction (FSD). FSD has several etiologies, including a vasculogenic component that could be exacerbated in diabetes. The internal pudendal artery supplies blood to the vagina and clitoris and diabetes-associated functional abnormalities in this vascular bed may contribute to FSD. Aim. The Goto-Kakizaki (GK) rat is a non-obese model of type 2 diabetes with elevated endothelin-1 (ET-1) activity. We hypothesize that female GK rats have diminished sexual responses and that the internal pudendal arteries demonstrate increased ET-1 constrictor sensitivity. Methods. Female Wistar and GK rats were used. Apomorphine (APO)-mediated genital vasocongestive arousal (GVA) was measured. Functional contraction (ET-1 and phenylephrine) and relaxation (acetylcholine, ACh) in the presence or absence of the ETA receptor antagonist (ET(A)R; atrasentan) or Rho-kinase inhibitor (Y-27632) were assessed in the internal pudendal and mesenteric arteries. Protein expression of ET-1 and RhoA/Rho-kinase signaling pathway was determined in the internal pudendal and mesenteric arteries. Main Outcome Measure. APO-mediated GVAs; contraction and relaxation of internal pudendal and mesenteric arteries; ET-1/RhoA/Rho-kinase protein expression. Results. GK rats demonstrated no APO-induced GVAs. Internal pudendal arteries, but not mesenteric arteries, from GK rats exhibited greater contractile sensitivity to ET-1 compared with Wistar arteries. ETAR blockade reduced ET-1-mediated constriction in GK internal pudendal and mesenteric arteries. Rho-kinase inhibition reduced ET-1-mediated constriction of GK internal pudendal but not mesenteric arteries; however, it had no effect on arteries from Wistar rats. RhoA protein expression was elevated in GK internal pudendal arteries. At the highest concentrations, ACh-mediated relaxation was greater in the GK internal pudendal artery; however, no difference was observed in the mesenteric artery. Conclusions. Female GK rats demonstrate decreased sexual responses that may be because of increased constrictor sensitivity to the ET-1/RhoA/Rho-kinase signaling in the internal pudendal artery. Allahdadi KJ, Hannan JL, Ergul A, Tostes RC, and Webb RC. Internal pudendal artery from type 2 diabetic female rats demonstrate elevated endothelin-1-mediated constriction. J Sex Med 2011;8:2472-2483.