369 resultados para 2nd Sunday after Epiphany
Resumo:
This study examined the effect of weight loss on energy intake, vitamin C, E, beta-carotene (diet/blood), reduced glutathione (GSH), C-reactive protein (CRP), thiobarbituric acid reactive substances (TBARS), catalase, and myeloperoxidase, in patients with Roux-en-Y bypass gastroplasty. Prospective clinical study with control (C) and bariatric (B) groups (n = 20 each). Age was 38.8 +/- 11.1 (C) and 37.8 +/- 11.2 years (B), and body mass indices (BMI) were 22.4 +/- 2.4 and 48.1 +/- 8.7 kg/m(2), respectively. Group C was assessed on a single occasion and B at three time points (basal period and 3 and 6 months after gastroplasty). BMI was decreased at three (38.3 +/- 1.7, P = 0.018) and 6 months after surgery (34.9 +/- 1.7, P < 0.001). Mean weight loss was 20.53 +/- 1.1 after three and 27.96 +/- 1.3 kg after 6 months. Serum vitamin C and beta-carotene (P < 0.01 and P < 0.001, respectively) were increased at 6 months compared to basal. Basal serum vitamin C (P = 0.001) and beta-carotene (P < 0.001) were lower compared to controls. Serum vitamin E corrected for cholesterol and triglycerides was higher in group B at three (P = 0.01) and 6 months (P = 0.001) and lower at basal (P < 0.001) compared to controls. GSH was higher in controls (P < 0.001) compared to basal. Catalase (P = 0.01) and TBARS (P < 0.001) were higher in group B at 6 months. TBARS were higher (P < 0.001) at basal compared to controls. Myeloperoxidase and CRP decreased in group B after three (P = 0.028, P = 0.010) and 6 months (P < 0.001, P = 0.001), respectively. Roux-en-Y bypass gastroplasty led to decreased proinflammatory parameters together with increased nutritional antioxidants, catalase, and TBARS, and decreased GSH 6 months after surgery.
Resumo:
Objective: To analyse the effect of integrated orthodontic treatment, orthognathic surgery and orofacial myofunctional therapy on masseter muscle thickness in patients with class III dentofacial deformity three years after orthognathic surgery. Design: A longitudinal study was conducted on 13 patients with class III dentofacial deformities, denoted here as group P1 (before surgery) and group P3 (same patients 3 years to 3 years and 8 months after surgery). Fifteen individuals with no changes in facial morphology or dental occlusion were assigned to the control group (CG). Masseter muscle ultrasonography was performed in the resting and biting situations in the three groups. Data were analysed statistically by a mixed-effects linear model considering a level of significance of P < 0.05. Results: Significantly higher values (P < 0.01) of masseter muscle thickness (cm) were detected in group P3 (right rest: 0.82 +/- 0.16, left rest: 0.87 +/- 0.21, right bite: 1 +/- 0.22, left bite: 1.04 +/- 0.28) compared to group P1 (right rest: 0.63 +/- 0.19, left rest: 0.64 +/- 0.15, right bite: 0.87 +/- 0.16, left bite: 0.88 +/- 0.14). Between P3 and CG (right rest: 1.02 +/- 0.19, left rest: 1 +/- 0.19, right bite: 1.18 +/- 0.22, left bite: 1.16 +/- 0.22) there was a significant difference on the right side of the muscle (P < 0.05) in both situations and on the left side at rest. Conclusion: The proposed treatment resulted in improved masseter muscle thickness in patients with class III dentofacial deformity. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Shrimp is a frequent cause of food allergy. Tropomyosin is the major allergen in shrimp, and it shares homology to tropomyosins from other crustaceans, dust mites, cockroach, and parasites. Objective: The aim of this study was to determine the value of detection of IgE to shrimp tropomyosin in the diagnosis of shrimp allergy. Methods: We have studied 35 patients with asthma, rhinitis, or both who were sensitized to Dermatophagoides pteronyssinus. All subjects underwent skin prick testing in addition to double-blind, placebo-controlled food challenges (DBPCFC); oral open challenges; or both with shrimp. Measurements of IgE to shrimp and shrimp tropomyosin were carried out by means of CAP and chimeric ELISA, respectively. Results: Oral challenges confirmed the diagnosis of shrimp allergy in 7 patients. IgE measurement to shrimp tropomyosin was positive in 71.4% of the patients with shrimp allergy. Of the 28 patients without shrimp allergy, only 7.1% (2/28) had IgE to shrimp tropomyosin compared with 25% (7/28) who had IgE to shrimp and 35.7% (10/28) who had positive skin prick test responses to shrimp. Sensitivity was similar for all 3 methods (71.4%); in contrast, specificity of IgE to shrimp tropomyosin (92.8%) was greater than that of IgE to shrimp (75%) and skin prick testing (64.2%). With regard to diagnostic efficiency, measurement of IgE to shrimp tropomyosin was superior to measurement of IgE to shrimp and skin prick testing (88.5%, 74.2%, and 65.7%, respectively). Conclusion: Use of measurements of IgE to shrimp tropomyosin provided added value to the diagnosis of shrimp allergy. (J Allergy Clin Immunol 2010;125:872-8.)
Resumo:
Biochemical markers for remission on acromegaly activity are controversial. We studied a subset of treated acromegalic patients with discordant nadir GH levels after oral glucose tolerance test (oGTT) and IGF-I values to refine the current consensus on acromegaly remission. We also compared GH results by two GH immunoassays. From a cohort of 75 treated acromegalic patients, we studied 13 patients who presented an elevated IGF-I despite post-oGTT nadir GH of <= 1 mu g/l. The 12-h daytime GH profile (GH-12 h), nadir GH after oGTT, and basal IGF-I levels were studied in patients and controls. Bland-Altman method showed high concordance between GH assays. Acromegalic patients showed higher mean GH-12 h values (0.71+/-0.36 vs. 0.31+/-0.28 mu g/l; p<0.05) and nadir GH after oGTT (0.48+/-0.32 vs. 0.097+/-0.002 mu g/l; p<0.05) as compared to controls. Nadir GH correlated with mean GH-12 h (r=0.92, p<0.05). The mean GH-12 h value from upper 95% CI of controls (0.54 mu g/l) would correspond to a theoretical normal nadir GH of <= 0.27 mu g/l. Patients with GH nadir <= 0.3 mu g/l had IGF-I between 100-130% ULNR (percentage of upper limit of normal range) and mean GH-12 h of 0.35+/-0.15, and patients with GH nadir >0.3 and <= 1 mu g/l had IGF-I >130% ULNR and mean GH-12 h of 0.93+/-0.24 mu g/l. Our data integrate daytime GH secretion, nadir GH after oGTT, and plasma IGF-I concentrations showing a continuum of mild residual activity in a subgroup of treated acromegaly with nadir GH values <= 1 mu g/l. The degree of increased IGF-I levels and nadir GH after oGTT are correlated with the subtle abnormalities of daytime GH secretion.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background and purpose: Protein kinase (PK) A and the epsilon isoform of PKC (PKC epsilon) are involved in the development of hypernociception (increased sensitivity to noxious or innocuous stimuli) in several animal models of acute and persistent inflammatory pain. The present study evaluated the contribution of PKA and PKC epsilon to the development of prostaglandin E(2) (PGE(2))-induced mechanical hypernociception. Experimental approach: Prostaglandin E(2)-induced mechanical hypernociception was assessed by constant pressure rat paw test. The activation of PKA or PKC epsilon was evaluated by radioactive enzymic assay in the dorsal root ganglia (DRG) of sensory neurons from the hind paws. Key results: Hypernociception induced by PGE(2) (100 ng) by intraplantar (i.pl.) injection, was reduced by i.pl. treatment with inhibitors of PKA [A-kinase-anchoring protein St-Ht31 inhibitor peptide (AKAPI)], PKC epsilon (PKC epsilon I) or adenylyl cyclase. PKA activity was essential in the early phase of the induction of hypernociception, whereas PKC activity was involved in the maintenance of the later phase of hypernociception. In the DRG (L4-L5), activity of PKA increased at 30 min after injection of PGE(2) but PKC activity increased only after 180 min. Moreover, i.pl. injection of the catalytic subunit of PKA induced hypernociception which was markedly reduced by pretreatment with an inhibitor of PKC epsilon, while the hypernociception induced by paw injection of PKC epsilon agonist was not affected by an inhibitor of PKA (AKAPI). Conclusions and implications: Taken together, these findings are consistent with the suggestion that PKA activates PKC epsilon, which is a novel mechanism of interaction between these kinases during the development of PGE(2)-induced mechanical hypernociception.
Resumo:
Metabolic syndrome (MetS) denotes a clustering of risk factors that may affect nitric oxide (NO) bioavailability and predispose to cardiovascular diseases, which are delayed by exercise training. However, no previous study has examined how MetS affects markers of NO formation, and whether exercise training increases NO formation in MetS patients. Here, we tested these two hypotheses. We studied 48 sedentary individuals: 20 healthy controls and 28 MetS patients. Eighteen MetS patients were subjected to a 3-month exercise training (E+group), while the remaining 10 MetS patients remained sedentary (E-group). The plasma concentrations of nitrite, cGMP, and ADMA (asymmetrical dimethylarginine: an endogenous nitric oxide synthase inhibitor), and the whole blood nitrite concentrations were determined at baseline and after exercise training using an ozone-based chemiluminescence assay, and commercial enzyme immunoassays. Thiobarbituric acid reactive species (TBA-RS) were measured in the plasma to assess oxidative stress using a fluorometric method. We found that, compared with healthy subjects, patients with MetS have lower concentrations of markers of NO formation, including whole blood nitrite, plasma nitrite, and plasma cGMP, and increased oxidative stress (all P < 0.05). Exercise training increased the concentrations of whole blood nitrite and cGMP, and decreased both oxidative stress and the circulating concentrations of ADMA (both P < 0.05). These findings show clinical evidence for lower endogenous NO formation in patients with MetS, and for improvements in NO formation associated with exercise training in MetS patients. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus - nitric oxide (NO) acts as a neurotransmitter in the rat dorsolateral periaqueductal gray (dIPAG), a midbrain structure that modulates fear and defensive behavior. Since defensive reactions can be alleviated by anxiolytic/anti-panic drugs, the present study tested the effect of clomipramine, a serotonin re-uptake inhibitor, on the activation of NO-producing neurons in the dlPAG of rats exposed to a live predator. Double staining was performed using Fos immunohistochemistry and NADPH-diaphorase as techniques to mark neural activation and to detect NO-producing neurons, respectively. Male Wistar rats received acute or chronic (21 days) injections of saline or clomipramine (10 or 20 mg/kg/day) and were exposed to a live cat. The animals exhibited a robust defensive reaction accompanied by an increase in the number of Fos- and doublestained neurons in the dlPAG, suggesting that cat exposure activates NO-producing neurons. Such effects were not significantly attenuated by clomipramine treatments. The intensity of fear reaction correlated with the intensity of neural staining in the dlPAG, regardless the drug treatment. Thus, the present results reinforce the hypothesis that NO may coordinate defensive responses in the dIPAG and indicate that this mechanism may not be modulated by a serotonin re-uptake inhibitor. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: Making the diagnosis of acute pulmonary thromboembolism (APT) and assessing its severity is very challenging, While cardiac troponin I (cTnI) concentrations are promising in risk stratification, no previous study has examined whether there is a linear relation between cTnI concentrations and the severity of APT. Moreover, matrix metalloprotemases (MMPs) are involved in the pathophysiology of APT. However, it is unknown whether the increases in MMP concentrations after APT reflect the severity of this condition. We examined whether the circulating concentrations of these biomarkers increase in proportion to the severity of experimental APT induced in anesthetized dogs. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. Hemodynamic evaluations were carried out for 120 min. Gelatin zymography of MMP-2 and MMP-9 from plasma samples were performed and serum cTnI concentrations were determined at baseline and 120 min after APT. Results: While no significant increases in pro-MMP-2 concentrations were found after APT, pro-MMP-9 concentrations increased by 80% only after 5 ml/kg of clot embolization. Serum cTnI and plasma pro-MMP-9 concentrations correlated positively with pulmonary vascular resistance (P=0.007 and rs=0.833 for troponin 1, and P=0.034 and rs=0.684 for pro-MMP-9) and with pulmonary artery pressure (P=0.005 and rs=0.610 for troponin 1, and P=0.022 and rs=0.720 for pro-MMP-9). Conclusions: Circulating cTnI and pro-MMP-9 increase in proportion to the severity of APT, although the increases in plasma pro-MMP-9 are less clear with less severe APT. These findings may be relevant for clinical APT. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aims of this study were to characterize the spatial distribution of neurodegeneration after status epilepticus (SE) induced by either systemic (S) or intrahippocampal (H) injection of pilocarpine (PILO), two models of temporal lobe epilepsy (TLE), using FluoroJade (FJ) histochemistry, and to evaluate the kinetics of FJ staining in the H-PILO model. Therefore, we measured the severity of behavioral seizures during both types of SE and also evaluated the FJ staining pattern at 12, 24, and 168 h (7 days) after the H-PILO insult. We found that the amount of FJ-positive (FJ+) area was greater in SE induced by S-PILO as compared to SE induced by H-PILO. After SE induced by H-PILO, we found more FJ+ cells in the hilus of the dentate gyrus (DG) at 12 h, in CA3 at 24 h, and in CA1 at 168 h. We found also no correlation between seizure severity and the number of FJ+ cells in the hippocampus. Co-localization studies of FJ+ cells with either neuronal-specific nuclear protein (NeuN) or glial fibrillary acidic protein (GFAP) labeling 24 h after H-PILO demonstrated spatially selective neurodegeneration. Double labeling with FJ and parvalbumin (PV) showed both FJ+/PV+ and FJ+/PV- cells in hippocampus and entorhinal cortex, among other areas. The current data indicate that FJ+ areas are differentially distributed in the two TLE models and that these areas are greater in the S-PILO than in the H-PILO model. There is also a selective kinetics of FJ+ cells in the hippocampus after SE induced by H-PILO, with no association with the severity of seizures, probably as a consequence of the extra-hippocampal damage. These data point to SE induced by H-PILO as a low-mortality model of TLE, with regional spatial and temporal patterns of FJ staining. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Epileptic seizures are clinical manifestations of neuronal discharges characterized by hyperexcitability and/or hypersynchrony in the cortex and other subcortical regions. The pilocarpine (PILO) model of epilepsy mimics temporal lobe epilepsy (TLE) in humans. In the present study, we used a more selective approach: microinjection of PILO into the hilus of the dentate gyrus (H-PILO). Our main goal was to evaluate the behavioral and morphological alterations present in this model of TLE. Seventy-six percent of all animals receiving H-PILO injections had continuous seizures called status epilepticus (SE). A typical pattern of evolution of limbic seizures during the SE with a latency of 29.3 +/- 16.3 minutes was observed using an analysis of behavioral sequences. During the subsequent 30 days, 71% of all animals exhibited spontaneous recurrent seizures (SRSs) during a daily 8-hour videotaping session. These SRSs had a very conspicuous and characteristic pattern detected by behavioral sequences or neuroethological analysis. Only the animals that had SE showed positive Neo-Timm staining in the inner molecular layer of the dentate gyrus (sprouting) and reduced cell density in Ammon`s horn pyramidal cell subfield CA1. However, no correlation between the intensity of sprouting and the mean number and total number of SRSs was found. Additionally, using Fluoro-Jade staining, we observed neurodegeration in the hilus and pyramidal cell subfields CA3 and CM 24 hours after SE. These data indicate that H-PILO is a reliable, selective, efficient, low-mortality model that mimics the acute and chronic behavioral and morphological aspects of TLE. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Adrenalectomy-induced hypophagia is associated with increased satiety-related responses, which involve neuronal activation of the nucleus of the solitary tract (NTS). Besides its effects on the pituitary-adrenal axis, corticotrophin-releasing factor (CRF) has been shown to play an important role in feeding behaviour, as it possesses anorexigenic effects. We evaluated feeding-induced CRF mRNA expression in the paraventricular nucleus (PVN) and the effects of pretreatment with CRF(2) receptor antagonist (Antisauvagine-30, AS30) on food intake and activation of NTS neurons in response to feeding in adrenalectomised (ADX) rats. Compared to the sham group, ADX increased CRF mRNA levels in the PVN of fasted animals, which was further augmented by refeeding. AS30 treatment did not affect food intake in the sham and ADX + corticosterone (B) groups; however, it reversed hypophagia in the ADX group. In vehicle-pretreated animals, refeeding increased the number of Fos and Fos/TH-immunoreactive neurons in the NTS in the sham, ADX and ADX + B groups, with the highest number of neurons in the ADX animals. Similarly to its effect on food intake, pretreatment with AS30 in the ADX group also reversed the increased activation of NTS neurons induced by refeeding while having no effect in the sham and ADX + B animals. The present results show that adrenalectomy induces an increase in CRF mRNA expression in the PVN potentiated by feeding and that CRF(2) receptor antagonist abolishes the anorexigenic effect and the increased activation of NTS induced by feeding in the ADX animals. These data indicate that increased activity of PVN CRF neurons modulates brainstem satiety-related responses, contributing to hypophagia after adrenalectomy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The elevated plus-maze is an animal model used to study anxiety. In a second session, rats show a reduction in the exploratory behavior even when the two sessions are separated by intervals as large as 7 days. The aim of the present study was to investigate whether the reduction in the exploratory behavior is maintained after intervals larger than 7 days. Additionally, we aimed at investigating eventual correlations between behaviors in the plus-maze and activation of limbic structures as measured by Fos protein expression after the second session. Rats were tested for 5 min in the elevated plus-maze and re-tested 3, 9 or 33 days later. Other groups were tested only once. The rat brains were processed for immunohistochemical detection of Fos protein. The results show a decrease in the open arms exploration in the second trial with intervals of 3, 9 and 33 days. The expression of Fos protein in the piriform cortex, septal nucleus and paraventricular hypothalamic nucleus in the groups tested with intervals of 9 and 33 days were statistically different from the other groups. The alterations observed in exploratory behavior in the second session in the plus-maze did not correlate with Fos expression. In conclusion, although the specific test conditions were sufficient to evoke behavioral alterations in exploration in the elevated plus-maze, they were enough to induce significant Fos protein expression in piriform cortex, septal nucleus and thalamic and hypothalamic paraventricular nuclei but not in other areas such as dorsomedial nucleus of the hypothalamus and amygdala nuclei, known to be also active participants in circuits controlling fear and anxiety. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aims: Cisplatin (CP) promotes increased production of reactive oxygen species, which can activate p38 mitogen activated protein kinases (p38 MAPKs) leading to apoptosis and increased expression of proinflammatory mediators that intensify the cytotoxic effects of CP. We investigated the effect of the treatment with S13203580, a p38 MAPKs inhibitor, on oxidative stress, on the oxidation-associated signal, p38 MAPK and on apoptosis in U-injected rats, starting after the beginning of the renal damage. Main methods: Rats (n = 21) were injected with CP (5 mg/kg, i.p.) and 3 and 4 days after some of them (n = 8) were treated with SB203580 (0.5 mg/kg, i.p.). Controls (n = 6) received saline (i.p.). Two or five days after saline or CP injections, plasma creatinine, urinary volume, sodium and potassium fractional excretions, blood urea nitrogen and urinary lipid peroxidation were measured. The kidneys were removed for histological, apoptosis, immunohistochemical and Western blot studies. Key findings: CP caused abnormalities in kidney functions and structure associated with raised urinary peroxidation levels and higher number of apoptotic cells in the outer medulla. The immunostaining studies showed increased numbers of macrophages/monocytes and p-p38 MAPKs positive cells in the renal outer medulla. The increase of p-p38 MAPKs expression was confirmed by Western blot analysis. All of these alterations were attenuated by treatment with S13203580. Significance: These data suggest that the beneficial effect of SB203580 on CP-induced renal damage might be related, in part, to the blockade of p38 MAPK activation with reduction of the inflammatory process, oxidative stress and apoptotic cell death. (C) 2009 Elsevier Inc. All rights reserved.