42 resultados para wire
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.
Resumo:
Nb(3)Sn is one of the most used superconducting materials for applications in high magnetic fields. The improvement of the critical current densities (J(c)) is important, and must be analyzed together with the optimization of the flux pinning acting in the material. For Nb(3)Sn, it is known that the grain boundaries are the most effective pinning centers. However, the introduction of artificial pinning centers (APCs) with different superconducting properties has been proved to be beneficial for J(c). As these APCs are normally in the nanometric-scale, the conventional heat treatment profiles used for Nb(3)Sn wires cannot be directly applied, leading to excessive grain growth and/or increase of the APCs cross sections. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers in nanometric-scale were analyzed in an attempt to improve J(c) . It is described a methodology to optimize the heat treatment profiles in respect to diffusion, reaction and formation of the superconducting phases. Microstructural, transport and magnetic characterization were performed in an attempt to find the pinning mechanisms acting in the samples. It was concluded that the maximum current densities were found when normal phases (due to the introduction of the APCs) are acting as main pinning centers in the global behavior of the Nb(3)Sn superconducting wire.
Resumo:
Several high temperature superconductor (HTS) tapes have been developed since the late eighties. Due to the new techniques applied for their production, HTS tapes are becoming feasible and practical for many applications. In this work, we present the test results of five commercial HTS tapes from the BSCCO and YBCO families (short samples of 200 mm). We have measured and analyzed their intrinsic and extrinsic properties and compared their behaviors for fault current limiter (FCL) applications. Electrical measurements were performed to determine the critical current and the n value through the V-I relationship under DC and AC magnetic fields. The resistance per unit length was determined as a function of temperature. The magnetic characteristics were analyzed through susceptibility curves as a function of temperature. As transport current generates a magnetic field surrounding the HTS material, the magnetic measurements indicate the magnetic field supported by the tapes under a peak current 1.5 times higher than the critical current, I(c). By pulsed current tests the recovery time and the energy/volume during a current fault were also analyzed. These results are in agreement with the data found in the literature giving the most appropriate performance conductor for a FCL device (I(peak) = 4 kA) to be used in a 220 V-60 Hz grid.
Resumo:
Since the discovery of Nb(3)Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb(3)Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb(3)Sn wires reported up to now.
Resumo:
The main objective of this study was to evaluate the potential application of a lightweight concrete produced with lightweight coarse aggregate made of the water treatment sludge and sawdust (lightweight composite), by determining the thermal properties and possible environmental impact of future residue of this concrete. Two types of concrete were prepared: concrete produced with the lightweight composite dosed with cement/sand/composite/water in a mass ratio of 1:2.5:0.67:0.6 and conventional concrete dosed with cement/sand/crushed stone/water in a mass ratio of 1:4.8:5.8:0.8. The thermal properties were determined by the hot wire parallel technique. The possible environmental impact was measured using the procedures and guidelines of the Brazilian Association of Technical Standards - ABNT. The concrete produced with the lightweight composite presented a 23% lower thermal conductivity than the conventional concrete. The concrete produced with the lightweight composite presented a set of thermal properties suitable for the application of this concrete in non-structural sealing elements. The concentration of aluminum in the solubilized extract of the concrete produced with the lightweight composite was much lower than the concentration of aluminum in the water treatment sludge, confirming the possible reduction of environmental impact of this composite for use in concrete. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The nature of the molecular structure of plastics makes the properties of such materials markedly temperature dependent. In addition, the continuous increase in the utilization of polymeric materials in many specific applications has demanded knowledge of their physical properties, both during their processing as raw material, as well as over the working temperature range of the final polymer product. Thermal conductivity, thermal diffusivity and specific heat, namely the thermal properties, are the three most important physical properties of a material that are needed for heat transfer calculations. Recently, among several different methods for the determination of the thermal diffusivity and thermal conductivity, transient techniques have become the preferable way for measuring thermal properties of materials. In this work, a very simple and low cost variation of the well known Angstrom method is employed in the experimental determination of the thermal diffusivity of some selected polymers. Cylindrical shaped samples 3 cm diameter and 7 cm high were prepared by cutting from long cylindrical commercial bars. The reproducibility is very good, and the results obtained were checked against results obtained by the hot wire technique, laser flash technique, and when possible, they were also compared with data found in the literature. Thermal conductivity may be then derived from the thermal diffusivity with the knowledge of the bulk density and the specific heat, easily obtained by differential scanning calorimetry. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m(3)) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w & Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The paper is devoted to an experimental study of the effect of a shallow 3D roughness element on the evolution of a 2D Tollmien-Schlichting wave in a Blasius boundary layer. The experiments were carried out under controlled disturbance conditions on an airfoil section which could provide a long run with zero pressure gradient flow. A pneumatically driven slit source was used to introduce the Tollmien-Schilichting wave upstream of the lower branch of the neutral stability curve. A few wavelengths downstream, the T-S wave interacts with a cylindrical roughness element. The height of the roughness was slowly oscillating in time, which allows a continuous measurement of the T-S wave response downstream the roughness. The oscillation frequency was approximately 1500 times lower than the frequency of the studied Tollmien-Schlichting wave and therefore, behaved as a steady roughness with respect to the T-S wave. Hot wire anemometry was used to measure wall normal profiles and spanwise scans close to the maximum of the eigenfunction of the T-S wave. The oscillation of the roughness and the synchronization of all-equipments permitted the use of ensemble average techniques. Two different amplitudes of T-S waves with a non-dimensional frequency of F120E-06 were studied. They show a strong amplification of the disturbances in a small spanwise wave number range. The analysis of the wall normal T-S profiles suggests the growth of oblique modes.
Resumo:
A procedure is proposed to accurately model thin wires in lossy media by finite element analysis. It is based on the determination of a suitable element width in the vicinity of the wire, which strongly depends on the wire radius to yield accurate results. The approach is well adapted to the analysis of grounding systems. The numerical results of the application of finite element analysis with the suitably chosen element width are compared with both analytical results and those computed by a commercial package for the analysis of grounding systems, showing very good agreement.
Resumo:
Welded equipment for cryogenic applications is utilized in chemical, petrochemical, and metallurgical industries. One material suitable for cryogenic application is austenitic stainless steel, which usually doesn`t present ductile/brittle transition temperature, except in the weld metal, where the presence of ferrite and micro inclusions can promote a brittle failure, either by ferrite cleavage or dimple nucleation and growth, respectively. A 25-mm- (1-in.-) thick AISI 304 stainless steel base metal was welded with the SAW process using a 308L solid wire and two kinds of fluxes and constant voltage power sources with two types of electrical outputs: direct current electrode positive and balanced square wave alternating current. The welded joints were analyzed by chemical composition, microstructure characterization, room temperature mechanical properties, and CVN impact test at -100 degrees C (-73 degrees F). Results showed that an increase of chromium and nickel content was observed in all weld beads compared to base metal. The chromium and nickel equivalents ratio for the weld beads were always higher for welding with square wave AC for the two types of fluxes than for direct current. The modification in the Cr(eq)/Ni(eq) ratio changes the delta ferrite morphology and, consequently, modifies the weld bead toughness at lower temperatures. The oxygen content can also affect the toughness in the weld bead. The highest absorbed energy in a CVN impact test was obtained for the welding condition with square wave AC electrical output and neutral flux, followed by DC(+) electrical output and neutral flux, and square wave AC electrical output and alloyed flux.
Resumo:
Lightning-induced overvoltages have a considerable impact on the power quality of overhead distribution and telecommunications systems, and various models have been developed for the computation of the electromagnetic transients caused by indirect strokes. The most adequate has been shown to be the one proposed by Agrawal et al.; the Rusck model can be visualized as a particular case, as both models are equivalent when the lightning channel is perpendicular to the ground plane. In this paper, an extension of the Rusck model that enables the calculation of lightning-induced transients considering flashes to nearby elevated structures and realistic line configurations is tested against data obtained from both natural lightning and scale model experiments. The latter, performed under controlled conditions, can be used also to verify the validity of other coupling models and relevant codes. The so-called Extended Rusck Model, which is shown to be sufficiently accurate, is applied to the analysis of lightning-induced voltages on lines with a shield wire and/or surge arresters. The investigation conducted indicates that the ratio between the peak values of the voltages induced by typical first and subsequent strokes can be either greater or smaller than the unity, depending on the line configuration.
Resumo:
This paper presents the evaluation of the analog properties of nMOS junctionless (JL) multigate transistors, comparing their performance with those exhibited by inversion-mode (IM) trigate devices of similar dimensions. The study has been performed for devices operating in saturation as single-transistor amplifiers, and we have considered the dependence of the analog properties on fin width W(fin) and temperature T. Furthermore, this paper aims at providing a physical insight into the analog parameters of JL transistors. For that, in addition to device characterization, 3-D device simulations were performed. It is shown that, depending on gate voltage, JL devices can present both larger Early voltage V(EA) and larger intrinsic voltage gain A(V) than IM devices of similar dimensions. In addition, V(EA) and A(V) are always improved in JL devices when the temperature is increased, whereas they present a maximum value around room temperature for IM transistors.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.