29 resultados para venom toxin
Resumo:
Stings by Polistes wasps can cause life-threatening allergic reactions, pain and inflammation. We examined the changes in microvascular permeability and neutrophil influx caused by the venom of Polistes lanio a paper wasp found in southeastern Brazil. The intradermal injection of wasp venom caused long-lasting paw oedema and dose-dependently increased microvascular permeability in mouse dorsal skin. SR140333, an NK(1) receptor antagonist, markedly inhibited the response, but the NK(2) receptor antagonist SR48968 was ineffective. The oedema was reduced in capsaicin-treated rats, indicating a direct activation of sensory fibres. Dialysis of the venom partially reduced the oedema and the remaining response was further inhibited by SR140333. Mass spectrometric analysis of the venom revealed two peptides (QPPTPPEHRFPGLM and ASEPTALGLPRIFPGLM) with sequence similarities to the C-terminal region of tachykinin-like peptides found in Phoneutria nigniventer spider venom and vertebrates. Wasp venom failed to release histamine from mast cells in vitro and spectrofluorometric assay of the venom revealed a negligible content of histamine in the usual dose of P.l. lanio venom (1 nmol of histamine/7 mu g of venom)that was removed by dialysis. The histamine H(1) receptor antagonist pyrilamine, but not bradykinin B(1) or B(2) receptor antagonists, inhibited venom-induced oedema. In conclusion, P. l. lanio venom induces potent oedema and increases vascular permeability in mice, primarily through activation of tachykinin NK(1) receptors by substance P released from sensory C fibres, which in turn releases histamine from dermal mast cells. This is the first description of a neurovascular mechanism for P. l. lanio venom-mediated inflammation. The extent to which the two tachykinin-like peptides identified here contribute to this neurogenic inflammatory response remains to be elucidated. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods: Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results: We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion: This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.
Resumo:
The natural diversity of the eft operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT+ (25 strains) only or LT+/ST+ (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the eft operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.
Resumo:
The presence, development and production of mycotoxins by Aspergillus flavus and Fusarium verticillioides were studied in corn ears under field conditions after artificial contamination of corn silks. The planted area was divided into five treatments: T1, inoculated with A.flavus solution containing 1 x 10(8) spores, ears covered; T2, inoculated with F. verticillioides solution containing 1 X 10(8) spores, ears covered; T3, inoculated with E verticillioides plus A. flavus solution containing 1 x 10(8) spores of each, ears covered; T4, sprayed with sterile phosphate-buffered saline, ears covered; TS, non-sprayed silks, uncovered ears. Soil and air samples were also collected and analysed for the occurrence of fungi. Water activity, relative air humidity, rainfall and temperature were determined to assess the correlation between abiotic factors and the presence of fungi in the samples. Contamination with the inoculated fungus predominated in T1 and T2. In the other treatments, F. verticillioides was the most frequently isolated contaminant irrespective of treatment. Considering the production of mycotoxins, a positive relation between the production of fumonisins B-1 and B-2 and the frequency of F. verticillioides was statistically verified in all treatments. (C) 2007 Society of Chemical Industry.
Resumo:
Background and Objective: Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. Material and Methods: Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. Results: Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. Conclusion: Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Resumo:
Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.
Resumo:
Aims: Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent. Methods and Results: About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx(1), stx(2), eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)-PCR was performed to investigate the variants of stx(1) and stx(2), and the flagellar antigen (fliC) genes in nonmotile isolates. Five isolates were eae(+) and stx(-), and belonged to serotypes O128:H2/beta-intimin (2), O145:H2/gamma, O153:H7/beta and O178:H7/epsilon. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx(1c)stx(2d-O118) (46.9%), stx(1c) (27.2%), stx(2d-O118) (23.4%), and stx(1c)stx(2dOX3a) (2.5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates. Conclusions: This study demonstrated that healthy sheep in Sao Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC. Significance and Impact of the Study: As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.
Resumo:
Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A(1) peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A(2) peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2 Delta AB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A(2) sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2 Delta AB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae.
Resumo:
Heat-labile toxins (LT) encompass at least 16 natural polymorphic toxin variants expressed by wild-type enterotoxigenic Escherichia coli (ETEC) strains isolated from human beings, but only one specific form, produced by the reference ETEC H10407 strain (LT1), has been intensively studied either as a virulence-associated factor or as a mucosal/transcutaneous adjuvant. In the present study, we carried out a biological/immunological characterization of a natural LT variant (LT2) with four polymorphic sites at the A subunit (S190L, G196D, K213E, and S224T) and one at the B subunit (T75A). The results indicated that purified LT2, in comparison with LT1, displayed similar in vitro toxic activities (adenosine 3`,5`-cyclic monophosphate accumulation) on mammalian cells and in vivo immunogenicity following delivery via the oral route. Nonetheless, the LT2 variant showed increased adjuvant action to ovalbumin when delivered to mice via the transcutaneous route while antibodies raised in mice immunized with LT2 displayed enhanced affinity and neutralization activity to LT1 and LT2. Taken together, the results indicate that the two most frequent LT polymorphic forms expressed by wild ETEC strains share similar biological features, but differ with regard to their immunological properties.
Resumo:
Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Bothropasin is a 48 kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys(189) is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from I`ll SVMPs. The ECD motif is stabilized by the Cys(117)_Cys(310) disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu(276) of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other Pill SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other Pill members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.
Resumo:
Traditional venom immunotherapy uses injections of whole bee venom in buffer or adsorbed in Al (OH)(3) in an expensive, time-consuming way. New strategies to improve the safety and efficacy of this treatment with a reduction of injections would, therefore, be of general interest. It would improve patient compliance and provide socio-economic benefits. Liposomes have a long tradition in drug delivery because they increase the therapeutic index and avoid drug degradation and secondary effects. However, bee venom melittin (Mel) and phospholipase (PLA(2)) destroy the phospholipid membranes. Our central idea was to inhibit the PLA(2) and Mel activities through histidine alkylation and or tryptophan oxidation (with pbb, para-bromo-phenacyl bromide, and/or NBSN-bromosuccinimide, respectively) to make their encapsulations possible within stabilized liposomes. We strongly believe that this formulation will be nontoxic but immunogenic. In this paper, we present the whole bee venom conformation characterization during and after chemical modification and after interaction with liposome by ultraviolet, circular dichroism, and fluorescence spectroscopies. The PLA(2) and Mel activities were, measured indirectly by changes in turbidity at 400(nm), rhodamine leak-out, and hemolysis. The native whole bee venom (BV) presented 78.06% of alpha-helical content. The alkylation (A-BV) and succynilation (S-BV) of BV increased 0.44 and 0.20% of its alpha-helical content. The double-modified venom (S-A-BV) had a 0.74% increase of alpha-helical content. The BV chemical modification induced another change on protein conformations observed by Trp that became buried with respect to the native whole BV. It was demonstrated that the liposomal membranes must contain pbb (SPC:Cho:pbb, 26:7:1) as a component to protect them from aggregation and/or fusion. The membranes containing pbb maintained the same turbidity (100%) after incubation with modified venom, in contrast with pbb-free membranes that showed a 15% size decrease. This size decrease was interpreted as membrane degradation and was corroborated by a 50% rhodamine leak-out. Another fact that confirmed our interpretation was the observed 100% inhibition of the hemolytic activity after venom modification with pbb and NBS (S-A-BV). When S-A-BV interacted with liposomes, other protein conformational changes were observed and characterized by the increase of 1.93% on S-A-BV alpha-helical content and the presence of tryptophan residues in a more hydrophobic environment. In other words, the S-A-BV interacted with liposomal membranes, but this interaction was not effective to cause aggregation, leak-out, or fusion. A stable formulation composed by S-A-BV encapsulated within liposomes composed by SPC:Cho:pbb, at a ratio of 26:7:1, was devised. Large unilamellar vesicles of 202.5 nm with a negative surface charge (-24.29 mV) encapsulated 95% of S-A-BV. This formulation can, now, be assayed on VIT.