32 resultados para solitons in Bose-Einstein condensates
Resumo:
In this paper we consider the case of a Bose gas in low dimension in order to illustrate the applicability of a method that allows us to construct analytical relations, valid for a broad range of coupling parameters, for a function which asymptotic expansions are known. The method is well suitable to investigate the problem of stability of a collection of Bose particles trapped in one- dimensional configuration for the case where the scattering length presents a negative value. The eigenvalues for this interacting quantum one-dimensional many particle system become negative when the interactions overcome the trapping energy and, in this case, the system becomes unstable. Here we calculate the critical coupling parameter and apply for the case of Lithium atoms obtaining the critical number of particles for the limit of stability.
Resumo:
The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau`s criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent.
Resumo:
Non-linear methods for estimating variability in time-series are currently of widespread use. Among such methods are approximate entropy (ApEn) and sample approximate entropy (SampEn). The applicability of ApEn and SampEn in analyzing data is evident and their use is increasing. However, consistency is a point of concern in these tools, i.e., the classification of the temporal organization of a data set might indicate a relative less ordered series in relation to another when the opposite is true. As highlighted by their proponents themselves, ApEn and SampEn might present incorrect results due to this lack of consistency. In this study, we present a method which gains consistency by using ApEn repeatedly in a wide range of combinations of window lengths and matching error tolerance. The tool is called volumetric approximate entropy, vApEn. We analyze nine artificially generated prototypical time-series with different degrees of temporal order (combinations of sine waves, logistic maps with different control parameter values, random noises). While ApEn/SampEn clearly fail to consistently identify the temporal order of the sequences, vApEn correctly do. In order to validate the tool we performed shuffled and surrogate data analysis. Statistical analysis confirmed the consistency of the method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Introduction. The objective of this study was to show the morphologic characteristics of allograft renal biopsies in renal transplant patients with stable renal function, which can potentially be early markers of allograft dysfunction, after 5 years of follow-up. Methods. Forty-nine renal transplant patients with stable renal function were submitted to renal biopsies and simultaneous measurement of serum creatinine (Cr). Histology was evaluated using Banff scores, determination of interstitial fibrosis by Sirius red staining and immunohistochemical study of proximal tubule and interstitial compartment (using cytokeratin, vimentin, and myofibroblasts as markers). Biopsies were evaluated according to the presence or absence of the epitheliomesenchymal transition (EMT). The interstitial presence of myofibroblasts and tubular presence of vimentin was also analyzed simultaneously. Renal function was measured over the follow-up period to estimate the reduction of graft function. Results. Median posttransplant time at enrollment was 105 days. Patients were followed for 64.3 +/- 8.5 months. The mean Cr at biopsy time was 1.44 +/- 0.33 mg/dL, and after the follow-up it was 1.29 +/- 0.27 mg/dL. Nine patients (19%) had a reduction of their graft function. Eleven biopsies (22%) had tubulointerstitial alterations according to Banff score. Seventeen biopsies (34%) presented EMT. Fifteen biopsies (32%) had high interstitial expression of myofibroblasts and tubular vimentin. Using Cox multivariate analysis, HLA and high expression of interstitial myofibroblasts and tubular vimentin were associated with reduction of graft function, yielding a risk of 3.3 (P = .033) and 9.8 (P = .015), respectively. Conclusion. Fibrogenesis mechanisms occur very early after transplantation and are risk factors for long-term renal function deterioration.
Resumo:
We study a symplectic chain with a non-local form of coupling by means of a standard map lattice where the interaction strength decreases with the lattice distance as a power-law, in Such a way that one can pass continuously from a local (nearest-neighbor) to a global (mean-field) type of coupling. We investigate the formation of map clusters, or spatially coherent structures generated by the system dynamics. Such clusters are found to be related to stickiness of chaotic phase-space trajectories near periodic island remnants, and also to the behavior of the diffusion coefficient. An approximate two-dimensional map is derived to explain some of the features of this connection. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We study the propagation of perturbations in the energy density in a quark gluon plasma. Expanding the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations we obtain a nonlinear differential equation called the breaking wave equation. We solve it numerically and follow the time-evolution of initially localized pulses. We find that, quite unexpectedly, these pulses live for a very long time (compared to the reaction time-scales) before breaking. In practice, they mimick the Korteweg-de Vries solitons. Their existence may have some observable consequences.
Resumo:
Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the derection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density at high temperature. The equation of state is derived from the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations lead to the breaking wave equation for the density perturbation. We solve it numerically for this perturbation and follow the propagation of the initial pulses.
Resumo:
We construct static soliton solutions with non-zero Hopf topological charges to a theory which is an extension of the Skyrme-Faddeev model by the addition of a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled non-linear partial differential equations in two variables by a successive over-relaxation (SOR) method. We construct numerical solutions with Hopf charge up to four, and calculate their analytical behavior in some limiting cases. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms. Their energies and sizes tend to zero as that combination approaches a particular special value. We calculate the equivalent of the Vakulenko and Kapitanskii energy bound for the theory and find that it vanishes at that same special value of the coupling constants. In addition, the model presents an integrable sector with an in finite number of local conserved currents which apparently are not related to symmetries of the action. In the intersection of those two special sectors the theory possesses exact vortex solutions (static and time dependent) which were constructed in a previous paper by one of the authors. It is believed that such model describes some aspects of the low energy limit of the pure SU(2) Yang-Mills theory, and our results may be important in identifying important structures in that strong coupling regime.
Resumo:
We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.
Resumo:
We construct static soliton solutions with non-zero Hopf topological charges to a theory which is the extended Skyrme-Faddeev model with a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled nonlinear partial differential equations in two variables by a successive over-relaxation method. We construct numerical solutions with the Hopf charge up to 4. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms.
Resumo:
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.