53 resultados para shear stiffness
Resumo:
Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic damping treatments and the high-performance, modal selective and adaptive piezoelectric active control. Numerous hybrid damping treatments have been reported in the literature. They differ mainly by the relative positions of viscoelastic treatments, sensors and piezoelectric actuators. In this work we present an experimental analysis of three active-passive damping design configurations applied to a cantilever beam. In particular, two design configurations based on the extension mode of piezoelectric actuators combined with viscoelastic constrained layer damping treatments and one design configuration with shear piezoelectric actuators embedded in a sandwich beam with viscoelastic core are analyzed. For comparison purposes, a purely active design configuration with an extension piezoelectric actuator bonded to an elastic beam is also analyzed. The active-passive damping performance of the four design configurations is compared. Results show that active-passive design configurations provide more reliable and wider-range damping performance than the purely active configuration.
Resumo:
The glued- laminated lumber (glulam) technique is an efficient process for the rational use of wood. Fiber-reinforced polymer (FRPs) associated with glulam beams provide significant improvements in strength and stiffness and alter the failure mode of these structural elements. In this context, this paper presents guidance for glulam beam production, an experimental analysis of glulam beams made of Pinus caribea var. hondurensis species without and with externally-bonded FRP and theoretical models to evaluate reinforced glulam beams (bending strength and stiffness). Concerning the bending strength of the beams, this paper aims only to analyze the limit state of ultimate strength in compression and tension. A specific disposal was used in order to avoid lateral buckling, once the tested beams have a higher ratio height-to-width. The results indicate the need of production control so as to guarantee a higher efficiency of the glulam beams. The FRP introduced in the tensile section of glulam beams resulted in improvements on their bending strength and stiffness due to the reinforcement thickness increase. During the beams testing, two failure stages were observed. The first was a tensile failure on the sheet positioned under the reinforcement layer, while the second occurred as a result of a preliminary compression yielding on the upper side of the lumber, followed by both a shear failure on the fiber-lumber interface and a tensile failure in wood. The model shows a good correlation between the experimental and estimated results.
Resumo:
There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the sheaf strength of vertical interfaces of masonry walls.
Resumo:
The use of mechanical shear connectors, mainly headed stud bolts, is the most common way to achieve steel-concrete composite action. The encasement of the steel beam in the depth slab results in increase of strength and stiffness, reducing the total height of the floor. In this investigation, three partially encased composite beams were tested under flexural conditions and the main objective was to investigate some alternative positions for the headed studs. To provide longitudinal shear resistance between the I-shaped beam and the concrete, two positions of the,studs were investigated: vertically welded on the bottom flange and horizontally welded on the faces of the web. The experimental results have shown that the headed studs are effective to provide the composite action and increase the bending strength. Furthermore, the headed studs welded vertically on the bottom flange proved to be the most reliable position.
Resumo:
The inclined plane test (IPT) is commonly performed to measure the interface shear strength between different materials as those used in cover systems of landfills. The test, when interpreted according to European test Standards provides the static interface friction angle, usually assumed for 50 mm displacement and denoted as phi(stat)(50). However, if interpreted considering the several phases of the sliding process, the test is capable of yielding more realistic information about the interface shear strength such as differentiating interfaces which exhibit the same value of phi(stat)(50) but different behavior for displacement less than 50 mm. In this paper, the IPT is used to evaluate the interface shear strength of some materials usually present in cover liner systems of landfill. The results of the tests were analyzed for both, the static and the dynamic phases of the sliding and were interpreted based on the static initial friction angle, phi(0), and the limit friction angle, phi(lim). It is shown that depending on the sliding behavior of the interfaces, phi(stat)(50), which is usually adopted as the designing parameter in stability analysis, can be larger than phi(0) and phi(lim). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. In particular, for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping resulting from each shunted piezoelectric sensor is presented using the modal strain energy method. Results show that modal damping factors of 1%-2% can be obtained for three selected vibration modes.
Resumo:
Despite the frequent use of stepping motors in robotics, automation, and a variety of precision instruments, they can hardly be found in rotational viscometers. This paper proposes the use of a stepping motor to drive a conventional constant-shear-rate laboratory rotational viscometer to avoid the use of velocity sensor and gearbox and, thus, simplify the instrument design. To investigate this driving technique, a commercial rotating viscometer has been adapted to be driven by a bipolar stepping motor, which is controlled via a personal computer. Special circuitry has been added to microstep the stepping motor at selectable step sizes and to condition the torque signal. Tests have been carried out using the prototype to produce flow curves for two standard Newtonian fluids (920 and 12 560 mPa (.) s, both at 25 degrees C). The flow curves have been obtained by employing several distinct microstep sizes within the shear rate range of 50-500 s(-1). The results indicate the feasibility of the proposed driving technique.
Resumo:
This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.
Resumo:
This paper analyzes the punching strength of concrete flat slabs with shear reinforcement that does not embrace flexural reinforcement. This paper also reports the results of tests of slabs without shear reinforcement. Finally, this paper shows some comparisons of tests of similar slabs without shear reinforcement and slabs with different types of shear reinforcement. The obtained results show that the use of shear reinforcement elements without embracement in the flexural reinforcement improves the punching strength of reinforced concrete flat slabs.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
Coaracy Nunes was the first hydroelectric power plant in the Amazon region, being located in Araguari River, Amapa State, Brazil. The plant operates since 1976, presenting now a nominal capacity of 78 MW. The shear pins, which are installed in the turbine hydraulic arms to control the wicket gate and regulate the water flow into the turbine blades, suffered several breakdowns since 2004. These shear pins are made of an ASTM 410 stainless steel and were designed to break by a shear overload of 120 kN. Fractographic investigation of the pins, however, revealed two types of fracture topographies: a region of stable crack propagation area, with non-pronounced striation and secondary cracks; and a region of unstable propagation, featuring elongated dimples. These results indicated that the stable crack propagation occurred by fatigue (bidirectional bending), which was nucleated at machining marks under high nominal load. Finite element analysis was carried out using two loading conditions (pure shear and a combination of shear and bending) and the results indicated that the presence of a bending stress strongly increased the stress concentration factor (85% rise in the shear stress and 130% rise in the Von Mises stress). Misalignment during shear pins assembly associated with vibration might have promoted the premature failure of the shear by bending fatigue. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Exercise is an effective intervention for treating hypertension and arterial stiffness, but little is known about which exercise modality is the most effective in reducing arterial stiffness and blood pressure in hypertensive subjects. Our purpose was to evaluate the effect of continuous vs. interval exercise training on arterial stiffness and blood pressure in hypertensive patients. Sixty-five patients with hypertension were randomized to 16 weeks of continuous exercise training (n=26), interval training (n=26) or a sedentary routine (n=13). The training was conducted in two 40-min sessions a week. Assessment of arterial stiffness by carotid-femoral pulse wave velocity (PWV) measurement and 24-h ambulatory blood pressure monitoring (ABPM) were performed before and after the 16 weeks of training. At the end of the study, ABPM blood pressure had declined significantly only in the subjects with higher basal values and was independent of training modality. PWV had declined significantly only after interval training from 9.44 +/- 0.91 to 8.90 +/- 0.96 m s(-1), P=0.009 (continuous from 10.15 +/- 1.66 to 9.98 +/- 1.81 m s(-1), P-ns; control from 10.23 +/- 1.82 to 10.53 +/- 1.97 m s(-1), P-ns). Continuous and interval exercise training were beneficial for blood pressure control, but only interval training reduced arterial stiffness in treated hypertensive subjects. Hypertension Research (2010) 33, 627-632; doi:10.1038/hr.2010.42; published online 9 April 2010
Resumo:
BACKGROUND The impact of increased central arterial stiffness as a predictor of morbidity and mortality, independently of other cardiovascular (CV) risk factors, has been established. The main aim of the present work was to investigate the association of ethnicity on arterial stiffness in different ethnic groups from the Brazilian population. METHODS A total of 1,427 individuals from the general population were randomly selected from the Vitoria City metropolitan area and 588 Amerindians from a native community in Brazil. The ethnicity of the general population was classified by a standard questionnaire as Caucasian descent, African descent, or Mulattos (considered racially mixed subjects). Pulse wave velocity (PWV) was measured with a noninvasive automatic device (Complior, Colson; Garges les Gonesses, France). RESULTS Hemodynamic data of PWV, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) was higher in African descent individuals than in the other groups (P < 0.001). These results were still observed after adjustment for age and mean arterial pressure (P < 0.001). In addition, studying only normotensive individuals, PWV adjusted levels were higher in African descent individuals, and lower in Amerindians when compared with other ethnic groups (P < 0.01), showing, without the possible confounder effects of time and severity of hypertension or medication use, that PWV is associated with ethnicity in our population. CONCLUSION The study of different ethnic groups from a highly admixtured population was able to demonstrate an association between ethnicity and arterial stiffness.
Resumo:
Background: Cardiovascular diseases (CVD) are the main cause of death and disability in developed countries. In most cases, the progress of CVD is influenced by environmental factors and multifactorial inheritance. The purpose of this study was to investigate the association between APOE genotypes, cardiovascular risk factors, and a noninvasive measure of arterial stiffness in the Brazilian population. Methods: A total of 1493 urban Brazilian individuals were randomly selected from the general population of the Vitoria City Metropolitan area. Genetic analysis of the APOE polymorphism was conducted by PCR-RFLP and pulse wave velocity analyzed with a noninvasive automatic device. Results: Age, gender, body mass index, triglycerides, creatinine, uric acid, blood glucose, blood pressure phenotypes were no different between epsilon 2, epsilon 3 and epsilon 4 alleles. The epsilon 4 allele was associated with higher total-cholesterol (p < 0.001), LDL-C (p < 0.001), total-cholesterol/HDL-C ratio (p < 0.001), LDL/HDL-C ratio (p < 0.001), lower HDL-C values (p < 0.001) and higher risk to obesity (OR = 1.358, 95% CI = 1.019-1.811) and hyperuricemia (OR = 1.748, 95% CI = 1.170-2.611). Nevertheless, pulse wave velocity (p = 0.66) measures were no different between genotypes. The significant association between APOE genotypes and lipid levels persisted after a 5-year follow-up interval, but no interaction between time and genotype was observed for lipids longitudinal behavior. Conclusion: The epsilon 4 allele of the APOE gene is associated with a worse lipid profile in the Brazilian urban population. In our relatively young sample, the observed effect of APOE genotype on lipid levels was not translated into significant effects in arterial wall stiffness.
Resumo:
BACKGROUND Obstructive sleep apnea (OSA) is an established cause of hypertension However, it is not clear whether the frequency of masked hypertension in patients with OSA and whether OSA have an independent role on arterial stiffness taking into account ambulatory blood pressure (BP) monitoring (ABPM) METHODS We evaluated 61 male normotensive participants as determined by casual clinic BP level <140/90 mm Hg without clinical evidence of cardiovascular disease and on no medications (43 patients with moderate-to-severe OSA (apnea-hypopnea index (AHI) >= 15 events/hour by polysomnography) and 18 age- and body mass index-matched controls without OSA (AHl <5 events/hour)) Pulse wave velocity (PWV), an index of arterial stiffness, and 24-h ABPM were performed in a blinded fashion Masked hypertension was defined when abnormal daytime ABPM was >= 135 or >= 85 mm Hg RESULTS The AHI and lowest oxygen saturation were 26 +/- 16 and 90 +/- 2 vs 528 +/- 210 events/hour and 75 +/- 10% for controls and OSA patients, respectively, P < 0 001. Compared with controls, patients with OSA had higher office systolic BP (113 +/- 9 vs 118 +/- 10 mm Hg, P=0 05) and a higher unadjusted proportion of masked hypertension (2 controls (11.1%)vs 13 patients (30 2%), P < 005) PWV was 87 +/- 0.7, 9.4 +/- 1.0, and 10.6 +/- 1.1 m/s in the control, OSA without and with masked hypertension groups, respectively (P < 0 01 for each comparison) Multiple regression showed that systolic daytime ABPM and the lowest oxygen saturation were independently related to PWV (adjusted R(2) = 0 34, P < 0 01) CONCLUSIONS Patients with OSA presented a higher unadjusted rate of masked hypertension than matched controls. Lowest oxygen saturation has an independent association with arterial stiffness