24 resultados para semiclassical quantization
Resumo:
We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner`s ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincar, group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group I =GxG. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points xaG/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix ZaSpin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties.
Resumo:
A criticism of a recent article published in this journal, claiming to have reached a classical description of the Stern-Gerlach phenomenon, is presented here. The author of the article, among other mistakes, wrongly writes the total energy of each silver atom and, moreover, presents a nonsensical equation, from which his results and the conclusion of his article are derived.
Resumo:
We investigate the influence of vacuum polarization of quantum massive fields on the scalar sector of quasinormal modes in spherically symmetric black holes. We consider the evolution of a massless scalar field on the space-time corresponding to a charged semiclassical black hole, consisting of the quantum-corrected geometry of a Reissner-Nordstrom black hole dressed by a quantum massive scalar field in the large mass limit. Using a sixth order WKB approach we find a shift in the quasinormal mode frequencies due to vacuum polarization.
Resumo:
We develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which is based on Weyl symmetrically ordered operator products. By using a polydifferential representation for the deformed coordinates, xj we are able to formulate a simple and effective iterative procedure which allowed us to calculate the fourth-order star product (and may be extended to the fifth order at the expense of tedious but otherwise straightforward calculations). Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
Resumo:
We investigate the analog of Landau quantization, for a neutral polarized particle in the presence of homogeneous electric and magnetic external fields, in the context of non-commutative quantum mechanics. This particle, possessing electric and magnetic dipole moments, interacts with the fields via the Aharonov-Casher and He-McKellar-Wilkens effects. For this model we obtain the Landau energy spectrum and the radial eigenfunctions of the non-commutative space coordinates and non-commutative phase space coordinates. Also we show that the case of non-commutative phase space can be treated as a special case of the usual non-commutative space coordinates.
Resumo:
Stability of the quantized Hall phases is studied in weakly coupled multilayers as a function of the interlayer correlations controlled by the interlayer tunneling and by the random variation of the well thicknesses. A strong enough interlayer disorder destroys the symmetry responsible for the quantization of the Hall conductivity, resulting in the breakdown of the quantum Hall effect. A clear difference between the dimensionalities of the metallic and insulating quantum Hall phases is demonstrated. The sharpness of the quantized Hall steps obtained in the coupled multilayers with different degrees of randomization was found consistent with the calculated interlayer tunneling energies. The observed width of the transition between the quantized Hall states in random multilayers is explained in terms of the local fluctuations of the electron density.
Resumo:
Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.
Resumo:
We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.