26 resultados para pseudo-random permutation
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.
Resumo:
We consider one-dimensional random walks in random environment which are transient to the right. Our main interest is in the study of the sub-ballistic regime, where at time n the particle is typically at a distance of order O(n (kappa) ) from the origin, kappa is an element of (0, 1). We investigate the probabilities of moderate deviations from this behaviour. Specifically, we are interested in quenched and annealed probabilities of slowdown (at time n, the particle is at a distance of order O (n (nu 0)) from the origin, nu(0) is an element of (0, kappa)), and speedup (at time n, the particle is at a distance of order n (nu 1) from the origin , nu(1) is an element of (kappa, 1)), for the current location of the particle and for the hitting times. Also, we study probabilities of backtracking: at time n, the particle is located around (-n (nu) ), thus making an unusual excursion to the left. For the slowdown, our results are valid in the ballistic case as well.
Resumo:
We consider a random tree and introduce a metric in the space of trees to define the ""mean tree"" as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we have laws of large numbers and central limit theorems for sequence of independent identically distributed random trees. As application we propose tests to check if two samples of random trees have the same law.
Resumo:
Regression models for the mean quality-adjusted survival time are specified from hazard functions of transitions between two states and the mean quality-adjusted survival time may be a complex function of covariates. We discuss a regression model for the mean quality-adjusted survival (QAS) time based on pseudo-observations, which has the advantage of directly modeling the effect of covariates in the QAS time. Both Monte Carlo Simulations and a real data set are studied. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D R(d) until it hits the boundary and bounces randomly inside, according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord ""picked at random"" in D, and we study the angle of intersection of the process with a (d - 1) -dimensional manifold contained in D.
Resumo:
Given a Lorentzian manifold (M,g), a geodesic gamma in M and a timelike Jacobi field Y along gamma, we introduce a special class of instants along gamma that we call Y-pseudo conjugate (or focal relatively to some initial orthogonal submanifold). We prove that the Y-pseudo conjugate instants form a finite set, and their number equals the Morse index of (a suitable restriction of) the index form. This gives a Riemannian-like Morse index theorem. As special cases of the theory, we will consider geodesics in stationary and static Lorentzian manifolds, where the Jacobi field Y is obtained as the restriction of a globally defined timelike Killing vector field.
Resumo:
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance d(G)(u, v) is at least d(C)(u, v) - e(n). Let omega(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n)= log(d-1)log(d-1) n+omega(n) and vertical bar C vertical bar =2 log(d-1) n+O(omega(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 115-136, 2011
Resumo:
Consider the following problem: Forgiven graphs G and F(1),..., F(k), find a coloring of the edges of G with k colors such that G does not contain F; in color i. Rodl and Rucinski studied this problem for the random graph G,,, in the symmetric case when k is fixed and F(1) = ... = F(k) = F. They proved that such a coloring exists asymptotically almost surely (a.a.s.) provided that p <= bn(-beta) for some constants b = b(F,k) and beta = beta(F). This result is essentially best possible because for p >= Bn(-beta), where B = B(F, k) is a large constant, such an edge-coloring does not exist. Kohayakawa and Kreuter conjectured a threshold function n(-beta(F1,..., Fk)) for arbitrary F(1), ..., F(k). In this article we address the case when F(1),..., F(k) are cliques of different sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring of G(n,p) with p <= bn(-beta) for some constant b = b(F(1),..., F(k)), where beta = beta(F(1),..., F(k)) as conjectured. With a few exceptions, this algorithm also works in the general symmetric case. We also show that there exists a constant B = B(F,,..., Fk) such that for p >= Bn(-beta) the random graph G(n,p) a.a.s. does not have a valid k-edge-coloring provided the so-called KLR-conjecture holds. (C) 2008 Wiley Periodicals, Inc. Random Struct. Alg., 34, 419-453, 2009
Resumo:
We construct some examples using trees. Some of them are consistent counterexamples for the discrete reflection of certain topological properties. All the properties dealt with here were already known to be non-discretely reflexive if we assume CH and we show that the same is true assuming the existence of a Suslin tree. In some cases we actually get some ZFC results. We construct also, using a Suslin tree, a compact space that is pseudo-radial but it is not discretely generated. With a similar construction, but using an Aronszajn tree, we present a ZFC space that is first countable, omega-bounded but is not strongly w-bounded, answering a question of Peter Nyikos. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Raman and electronic spectra of the [3,5-bis(dicyanomethylene)cyclopentane-1,2,4-trionate] dianion, the croconate violet (CV), are reported in solutions of ionic liquids based on imidazolium cations. Different normal modes of the CV anion, nu (C=O), nu (CO) + nu (CC) + nu (CCN), and nu(C N), were used as probes of solvation characteristics of ionic liquids, and were compared with spectra of CV in common solvents. The spectra of CV in ionic liquids are similar to those in dichloromethane solution, but distinct from those in protic solvents such as ethanol or water. The UV-vis spectra of CV in ionic liquids strongly suggest pi-pi interactions between the CV anion and the imidazolium cation. Copyright (C) 2009 John Wiley & Sons, Ltd.