40 resultados para metadata schemes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to describe the changes in nursing education during the process prior to and after the establishment of democracy in Spain. It begins with the hypothesis that differences in social and political organization influenced the way the system of nursing education evolved, keeping it in line with neopositivistic schemes and exclusively technical approaches up until the advent of democracy. The evolution of a specific profile for nursing within the educational system has been shaped by the relationship between the systems of social and political organization in Spain. To examine the insertion of subjects such as the anthropology of healthcare into education programs for Spanish nursing, one must consider the cultural, intercultural and transcultural factors that are key to understanding the changes in nursing education that allowed for the adoption of a holistic approach in the curricula. Until the arrival of democracy in 1977, Spanish nursing education was solely technical in nature and the role of nurses was limited to the tasks and procedures defined by the bureaucratic thinking characteristic of the rational-technological paradigm. Consequently, during the long period prior to democracy, nursing in Spain was under the influence of neopositivistic and technical thinking, which had its effect on educational curricula. The addition of humanities and anthropology to the curricula, which facilitated a holistic approach, occurred once nursing became a field of study at the university level in 1977, a period that coincided with the beginnings of democracy in Spain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel graphical approach to adjust and evaluate frequency-based relays employed in anti-islanding protection schemes of distributed synchronous generators, in order to meet the anti-islanding and abnormal frequency variation requirements, simultaneously. The proposed method defines a region in the power mismatch space, inside which the relay non-detection zone should be located, if the above-mentioned requirements must be met. Such region is called power imbalance application region. Results show that this method can help protection engineers to adjust frequency-based relays to improve the anti-islanding capability and to minimize false operation occurrences, keeping the abnormal frequency variation utility requirements satisfied. Moreover, the proposed method can be employed to coordinate different types of frequency-based relays, aiming at improving overall performance of the distributed generator frequency protection scheme. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have a vast field of applications, including deployment in hostile environments. Thus, the adoption of security mechanisms is fundamental. However, the extremely constrained nature of sensors and the potentially dynamic behavior of WSNs hinder the use of key management mechanisms commonly applied in modern networks. For this reason, many lightweight key management solutions have been proposed to overcome these constraints. In this paper, we review the state of the art of these solutions and evaluate them based on metrics adequate for WSNs. We focus on pre-distribution schemes well-adapted for homogeneous networks (since this is a more general network organization), thus identifying generic features that can improve some of these metrics. We also discuss some challenges in the area and future research directions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families. In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field. (C) 2001 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fully conserving algorithm is developed in this paper for the integration of the equations of motion in nonlinear rod dynamics. The starting point is a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, which results in an extremely simple update of the rotational variables. The weak form is constructed with a non-orthogonal projection corresponding to the application of the virtual power theorem. Together with an appropriate time-collocation, it ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that nonlinear hyperelastic materials (and not only materials with quadratic potentials) are permitted without any prejudice on the conservation properties. Spatial discretization is performed via the finite element method and the performance of the scheme is assessed by means of several numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two-dimensional axisymmetric domain, while in the two-phase region. In general, the phenomenon starts off when a high-pressure, high-temperature liquid jet emerges from a small nozzle or orifice expanding into a low-pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two-phase high-speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation-of-state for the substance. A false-transient model is implemented using the shock capturing scheme: dispersion-controlled dissipative (DCD), which was used to calculate the flow conditions as the steady-state condition is reached. Numerical results with computational code DCD-2D vI have been analyzed. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher order (2,4) FDTD schemes used for numerical solutions of Maxwell`s equations are focused on diminishing the truncation errors caused by the Taylor series expansion of the spatial derivatives. These schemes use a larger computational stencil, which generally makes use of the two constant coefficients, C-1 and C-2, for the four-point central-difference operators. In this paper we propose a novel way to diminish these truncation errors, in order to obtain more accurate numerical solutions of Maxwell`s equations. For such purpose, we present a method to individually optimize the pair of coefficients, C-1 and C-2, based on any desired grid size resolution and size of time step. Particularly, we are interested in using coarser grid discretizations to be able to simulate electrically large domains. The results of our optimization algorithm show a significant reduction in dispersion error and numerical anisotropy for all modeled grid size resolutions. Numerical simulations of free-space propagation verifies the very promising theoretical results. The model is also shown to perform well in more complex, realistic scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing adoption of information systems in healthcare has led to a scenario where patient information security is more and more being regarded as a critical issue. Allowing patient information to be in jeopardy may lead to irreparable damage, physically, morally, and socially to the patient, potentially shaking the credibility of the healthcare institution. Medical images play a crucial role in such context, given their importance in diagnosis, treatment, and research. Therefore, it is vital to take measures in order to prevent tampering and determine their provenance. This demands adoption of security mechanisms to assure information integrity and authenticity. There are a number of works done in this field, based on two major approaches: use of metadata and use of watermarking. However, there still are limitations for both approaches that must be properly addressed. This paper presents a new method using cryptographic means to improve trustworthiness of medical images, providing a stronger link between the image and the information on its integrity and authenticity, without compromising image quality to the end user. Use of Digital Imaging and Communications in Medicine structures is also an advantage for ease of development and deployment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the broadband characteristic of chaotic signals, many of the methods that have been proposed for synchronizing chaotic systems do not usually present a satisfactory performance when applied to bandlimited communication channels. Here, the effects of bandwidth limitations imposed by the channel on the synchronous solution of a discrete-time chaotic master-slave network are investigated. The discrete-time system considered in this study is the Henon map. It is analytically shown that synchronism can be achieved in such a network by introducing a digital filter in the feedback loop responsible for generating the chaotic signal that will be sent to the slave node. Numerical simulations relating the filter parameters, such as its order and cut-off frequency, to the maximum Lyapunov exponent of the master node, which determines if the transmitted signal is chaotic or not, are also presented. These results can be useful for practical communication schemes based on chaos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.