80 resultados para iron-reducing phenolic compounds
Resumo:
This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The antioxidant activity of natural and synthetic compounds was evaluated using five in vitro methods: ferric reducing/antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydradzyl (DPPH), oxygen radical absorption capacity (ORAL), oxidation of an aqueous dispersion of linoleic acid accelerated by azo-initiators (LAOX), and oxidation of a meat homogenate submitted to a thermal treatment (TBARS). All results were expressed as Trolox equivalents. The application of multivariate statistical techniques suggested that the phenolic compounds (caffeic acid, carnosic acid, genistein and resveratrol), beyond their high antioxidant activity measured by the DPPH, FRAP and TBARS methods, showed the highest ability to react with the radicals in the ORAC methodology, compared to the other compounds evaluated in this study (ascorbic acid, erythorbate, tocopherol, BHT, Trolox, tryptophan, citric acid, EDTA, glutathione, lecithin, methionine and tyrosine). This property was significantly correlated with the number of phenolic rings and catecholic structure present in the molecule. Based on a multivariate analysis, it is possible to select compounds from different clusters and explore their antioxidant activity interactions in food products.
Resumo:
Plectranthus barbatus Andrews (Lamiaceae) is a popular medicinal plant used to treat gastrointestinal and hepatic ailments. In this work, we assessed the antioxidant activity of the aqueous extract of P. barbatus leaves on Fe(2+)-citrate-mediated membrane lipid peroxidation in isolated rat liver mitochondria, as well in non-mitochondrial systems: DPPH reduction, (center dot)OH scavenging activity, and iron chelation by prevention of formation of the Fe(2+)-bathophenanthroline disulfonic acid (BPS) complex. Within all the tested concentrations (15-75 mu g/ml), P. barbatus extract presented significant free radical-scavenging activity (IC(50) = 35.8 +/- 0.27 mu g/ml in the DPPH: assay and IC(50) = 69.1 +/- 0.73 mu g/ml in the (center dot)OH assay) and chelated iron (IC(50) = 30.4 +/- 3.31 mu g/ml). Over the same concentration range, the plant extract protected mitochondria against Fe(2+)/citrate-mediated swelling and malondialdehyde production, a property that persisted even after simulation of its passage through the digestive tract. These effects could be attributed to the phenolic compounds, nepetoidin - caffeic acid esters, present in the extract. Therefore, P. barbatus extract prevents mitochondrial membrane lipid peroxidation, probably by chelation of iron, revealing potential applicability as a therapeutic source of molecules against diseases involving mitochondrial iron overload. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.
Resumo:
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Resumo:
Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry
Resumo:
The present work reports amounts of flavonoids and phenylpropanoids of culms of three sugarcane varieties and of raw juice, syrup, molasse and VHP sugar. The antioxidant activity of those materials was evaluated by the DPPH and beta-carotene/linoleic acid methods. The predominant phenolics in culms were phenylpropanoids (caffeic, chlorogenic and coumaric acids), while flavones (apigenin, tricin and luteolin derivatives) appeared in lower amounts. Differences were noted either among phenolic profiles of sugarcane culms or between culms and sugarcane products. The antioxidant activities of solutions from most samples were similar or higher than a 80 mu M Trolox solution. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
Samples of fruit from the jussara palm plant (Euterpe edulis), collected in different regions of the state of Santa Catarina. Brazil, were analyzed for chemical composition. phenolic acids. anthocyanins, flavonoids and fatty acids profile. Results indicated that the jussara fruit has a high lipid content (18.45-44.08%), oleic acid (44.17-55.61%) and linoleic acid (18.19-25.36%) are the fatty acids found in the highest proportion, and other components were proteins (5.13-8.21%). ash (1.55-3.32%) and moisture (34.95-42.47%). Significant differences were found in the total phenolic, total monomeric anthocyanins and other flavonoids for the samples from the five cultivation regions. The fruit from region E harvested in summer, with high temperatures and medium altitudes, had the highest contents of total phenolics (2610.86 +/- 3.89 mg 100 g(-1) GAE) and monomeric anthocyanins (1080.54 +/- 2.33 mg 100g(-1) cy-3-glu). The phenolic compound included ferulic, gallic, hydroxybenzoic and p-coumaric acids, as well as catechin, epicatechin and quercetin. The results show promising perspectives for the exploitation of this tropical fruit with a chemical composition comprising considerable phenolic acids and flavonoids compounds and showing activity antioxidant. (C) 2010 Published by Elsevier Ltd.
Resumo:
Fruits of seven fully ripened strawberry cultivars grown in Brazil (Dover, Camp Dover, Camarosa, Sweet Charlie, Toyonoka, Oso Grande, and Piedade) were evaluated for total phenolics, antioxidant activity based on DPPH radical scavenging assay, and functionality such as inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potentially managing hyperglycemia and hypertension. The total phenolics content ranged from 966 to 1571 mu g of gallic acid/g of fruit fresh weight for Toyonoka and Dover, respectively. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds in aqueous extracts of strawberries were ellagic acid, quercetin, and chlorogenic acid. Strawberries had high alpha-glucosidase inhibitory activity. However, alpha-amylase inhibitory activity was very low in all cultivars. This suggested that strawberries could be considered as a potential dietary source with anti-hyperglycemic potential. The evaluated cultivars had no significant ACE inhibitory activity, reflecting low anti-hypertensive potential.
Resumo:
Yerba mate extract (Ilex paraguariensis) is a Source of phenolic compounds that possesses in vitro antioxidant activities and may contribute to a reduction in the risk of cardiovascular disease. In this Study we examined the acute effects of the consumption of mate infusion on ex vivo plasma and low-density lipoprotein (LDL) oxidation, plasma antioxidant capacity, and platelet aggregation. Twelve healthy fasted subjects ingested 500 mL. of mate infusion and blood samples were collected before and I h after mate intake. Lipid peroxidation of plasma and LDL was monitored by the measurement of cholesteryl-ester hydroperoxides (CE-OOH) and cholesterol oxides. The plasma antioxidant capacity was measured as ferric-reducing antioxidant potential (FRAP). Platelet aggregation was evaluated in platelet-rich plasma Stimulated with adenosine diphosphate and coagulation was tested in platelet-poor plasma. Ingestion of mate infusion diminished the ex vivo oxidizability of both plasma and LDL particles. After mate intake, the CE-OOH levels were around 50% lower in plasma oxidized with copper or 2,2`-azobis[-2-amidine-propane-hydrochloride] (AAPH) and the lag time to plasma oxidation increased 2-fold (P < 0.05). Copper- and AAPH-induced LDL peroxidation were also inhibited by around 50% and 20%, respectively, after mate Consumption (P < 0.05). The levels of various oxysterols were significantly reduced in oxidized-plasma and LDL (P < 0.05) and FRAP increased by 7.7% after mate intake (P < 0.01). However. mate consumption did not inhibit platelet aggregation or blood coagulation. In summary, intake of yerba mate infusion improved the antioxidant capacity and the resistance of plasma and LDL particles to ex vivo lipid peroxidation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Phenolic compounds are found in seaweed species together with other Substances presenting antioxidant activity. The objective of this work was to evaluate the antioxidant activity of the free phenolic acids (FPA) fraction from the seaweed Halimeda monile, and its activity to protect the expression of hepatic enzymes in rats, under experimental CCI(4) injury. The antioxidant activity was measured by the DPPH method. The FPA fraction (80 mg/kg, p.o.) was administered during 20 consecutive days to rats. The peroxidation was performed by thiobarbituric acid reactive substances (TBARS). The SOD and CAT enzymatic expressions were measured by RT/PCR. The histology technique was used to evaluate liver injuries. The expression of both, CAT and SOD genes, was more preserved by FPA. Only partial injury could be observed by histology in the liver of rats receiving FPA as compared with the control group; and CCI(4) administration induced 60% more peroxidation as compared with the rats receiving FPA. These data suggest that FPA could modulate the antioxidant enzymes and oxidative status in the liver through protection against adverse effects induced by chemical agents.
Resumo:
Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
To identify chemical descriptors to distinguish Cuban from non-Cuban rums, analyses of 44 samples of rum from 15 different countries are described. To provide the chemical descriptors, analyses of the the mineral fraction, phenolic compounds, caramel, alcohols, acetic acid, ethyl acetate, ketones, and aldehydes were carried out. The analytical data were treated through the following chemometric methods: principal component analysis (PCA), partial least square-discriminate analysis (PLS-DA), and linear discriminate analysis (LDA). These analyses indicated 23 analytes as relevant chemical descriptors for the separation of rums into two distinct groups. The possibility of clustering the rum samples investigated through PCA analysis led to an accumulative percentage of 70.4% in the first three principal components, and isoamyl alcohol, n-propyl alcohol, copper, iron, 2-furfuraldehyde (furfuraldehyde), phenylmethanal (benzaldehyde), epicatechin, and vanillin were used as chemical descriptors. By applying the PLS-DA technique to the whole set of analytical data, the following analytes have been selected as descriptors: acetone, sec-butyl alcohol, isobutyl alcohol, ethyl acetate, methanol, isoamyl alcohol, magnesium, sodium, lead, iron, manganese, copper, zinc, 4-hydroxy3,5-dimethoxybenzaldehyde (syringaldehyde), methaldehyde (formaldehyde), 5-hydroxymethyl-2furfuraldehyde (5-HMF), acetalclehyde, 2-furfuraldehyde, 2-butenal (crotonaldehyde), n-pentanal (valeraldehyde), iso-pentanal (isovaleraldehyde), benzaldehyde, 2,3-butanodione monoxime, acetylacetone, epicatechin, and vanillin. By applying the LIDA technique, a model was developed, and the following analytes were selected as descriptors: ethyl acetate, sec-butyl alcohol, n-propyl alcohol, n-butyl alcohol, isoamyl alcohol, isobutyl alcohol, caramel, catechin, vanillin, epicatechin, manganese, acetalclehyde, 4-hydroxy-3-methoxybenzoic acid, 2-butenal, 4-hydroxy-3,5-dimethoxybenzoic acid, cyclopentanone, acetone, lead, zinc, calcium, barium, strontium, and sodium. This model allowed the discrimination of Cuban rums from the others with 88.2% accuracy.
Resumo:
A total of 25 sugarcane spirit extracts of six different Brazilian woods and oak, commonly used by cooperage industries for aging cachaca, were analyzed for the presence of 14 phenolic compounds (ellagic acid, gallic acid, vanillin, syringaldehyde, synapaldehyde, coniferaldehyde, vanillic acid, syringic acid, quercetin, trans-resveratrol, catechin, epicatechin, eugenol, and myricetin) and two coumarins (scopoletin and coumarin) by HPLC-DAD-fluorescence and HPLC-ESI-MS(n). Furthermore, an HPLC-DAD chromatographic fingerprint was build-up using chemometric analysis based on the chromatographic elution profiles of the extracts monitored at 280 nm. Major components identified and quantified in Brazilian wood extracts were coumarin, ellagic acid, and catechin, whereas oak extracts shown a major contribution of catechin, vanillic acid, and syringaldehyde. The main difference observed among oak and Brazilian woods remains in the concentration of coumarin, catechin, syringaldehyde, and coniferaldehyde. The chemometric analysis of the quantitative profile of the 14 phenolic compounds and two coumarins in the wood extracts provides a differentiation between the Brazilian wood and oak extracts. The chromatographic fingerprint treated by multivariate analysis revealed significant differences among Brazilian woods themselves and oak, clearly defining six groups of wood extracts: (i) oak extracts, (ii) jatoba extracts, (iii) cabreuva-parda extracts, (iv) amendoim extracts, (v) canela-sassafras extracts and (vi) pequi extracts.