42 resultados para film cooling
Resumo:
Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A solar energy powered failing film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO(2), making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO(2) from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector. and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Adsorbent and corrosion resistant films are useful for sensor development. Therefore, the aim of this work is the production and characterization of plasma polymerized fluorinated organic ether thin films for sensor development. The polymerized reactant was methyl nonafluoro(iso)butyl ether. Infrared Spectroscopy showed fluorinated species and eventually CO but CH(n) is a minor species. Contact angle measurements indicated that the film is hydrophobic and organophilic but oleophobic. Optical microscopy reveals not only a good adherence on metals and acrylic but also resistance for organic solvents, acid and basic aqueous solution exposure. Double layer and intermixing are possible and might lead to island formation. Quartz Crystal Microbalance showed that 2-propanol permeates the film but there is no sensitivity to n-hexane. The microreactor manufactured using a 73 cm long microchannel can retain approximately 9 X 10(-4) g/cm(2) of 2-propanol in vapor phase. Therefore, the film is a good candidate for preconcentration of volatile organic compounds even in corrosive environment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Adsorbent materials and composites are quite useful for sensor development. Therefore, the aim of this work is the surface modification of particulates and/or composite formation. The material was produced by plasma polymerization of HMDS (hexamethyldisilazane) in a single step. SEM analysis shows good surface coverage of particulates with a plasma polymerized film formed by several clusters that might increase adsorption. Particles (starch. 5 5 mu m) recovered with HMDS films show good properties for retention of medium-size Organic molecules, such as dye. Thin films formed by a mixture of particles and plasma polymerized thin film HMDS species were obtained in a single step and can be used for retention of organic compounds, in liquid or gaseous phase. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The cooling intensity of topical emulsions added with encapsulated or free menthol was evaluated by a screened and trained panel recruited based on the American Society for Testing and Materials method. A sensory panel composed of 10 trained judges performed the evaluation of samples stored at 22 +/- 2C for 24 h and, after 28 days of storage, at 37.0 +/- 0.5C. The obtained data were analyzed by analysis of variance and Tukey`s test. The results showed an increase of cooling intensity as a function of encapsulated menthol concentration. The opposite was observed in samples added with free menthol, which may have caused sensory fatigue. Storage at 37 +/- 0.5C for 28 days had no impact on the cooling intensity of emulsions containing encapsulated menthol, demonstrating high stability and suggesting its application in cooling skin care products. In contrast, emulsions added with free menthol showed a drastic decrease of cooling intensity at 37 +/- 0.5C..
Resumo:
Poly(pyrrole) (PPY) coating was prepared on a stainless-steel (SS) wire for solid-phase microextraction (SPME) by electrochemical deposition (cyclic voltammetric). The PPY was evaluated by analyzing new-generation antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline) in plasma sample by SPME and liquid chromatography with UV detection (LC-UV). The effect of electrolyte Solution (lithium perchlorate or tetrabutylammonium perchlorate) and the number of cycles (50, 100 or 200) applied during the polymerization process on the SPME performance was evaluated. Important factors in the optimization of SPME efficiency such as extraction time, temperature, pH, influence of plasma proteins on sorption mechanisms, and desorption conditions are discussed. The SPME-PPY/LC method showed to be linear in concentrations ranging from the limit of quantification (LOQ) to 1200 ng mL(-1). The LOQ values range from 16 to 25 ng mL-1. The inter-day precision of the SPME-PPY/LC method presented coefficient of variation (CV) lower than 15%. Based on analytical validation results, the SPME-PPY/LC methodology showed to be adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the SPME-PPY/LC method was applied to the analysis of plasma samples from elderly depressed patients. (c) 2009 Elsevier B.V. All rights reserved,
Resumo:
In this work, a fast, non destructive voltammetric method for cocaine detection in acetonitrile medium using a platinum disk electrode chemically modified with cobalt-hexacyanoferrate (CoHCFe) film is described. The deposition of CoHCFe film at platinum disk (working electrode) was carried out in aqueous solution containing NaClO(4) at 0.1 mol L(-1) as supporting electrolite. Stability studies of the film and subsequent voltammetric analysis of cocaine were made in acetonitrile medium with NaClO4 at 0.1 mol L(-1) as supporting electrolite. A reversible interaction between cocaine and CoHCFe at the film produces a proportional decrease of original peak current, due to the formation of a complex between cocaine and cobalt ions, with subsequent partial passivation of the film surface, being the intensity of current decrease used as analytical signal for cocaine. A linear dependence of cocaine detection was carried out in the range from 2.4 x 10 x 4 to 1.5 x 10(-3) mol L(-1), with a linear correlation coefficient of 0.994 and a detection limit of 1.4 x 10 x 4 mol L(-1). The analysis of confiscated samples by the proposed method indicated cocaine levels from 37% to 95% (m/m) and these results were validated by comparison to HPLC technique, being obtained good correlation between both methods. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Lead (Pb) contamination in the black paper that recovers intraoral films (BKP) has been investigated. BKP samples were collected from the Radiology Clinics of the Dental School of Ribeirao Preto, University of Sao Paulo, Brazil. For sake of comparison, four different methods were used. The results revealed the presence of high lead levels, well above the maximum limit allowed by the legislation. Pb contamination levels achieved after the following treatments: paper digestion in nitric acid, microwave treatment, DIN38414-54 method and TCLP method were 997 mu g g(-1), 189 mu g g(-1), 20.8 mu g g(-1), and 54.0 mu g g(-1), respectively. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma mass spectrometry (ICP-MS) were employed for lead determination according to the protocols of the applied methods. Lead contamination in used BKP was confirmed by scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDS). All the SEM imaging was carried out in the secondary electron mode (SE) and backscattered-electron mode (QBSD) following punctual X-ray fluorescence spectra. Soil contamination derived from this product revealed the urgent need of addressing this problem. These elevated Pb levels, show that a preliminary treatment of BKP is mandatory before it is disposed into the common trash. The high lead content of this material makes its direct dumping into the environment unwise. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.
Resumo:
This work reports on the synthesis and characterization of the ligand 3-hexadecylpentane-2,4-drone (Hhdacac) and its Eu(3+) complexes Eu(hdacac)(6) center dot 2H(2)O, Eu(hdacac)(6) center dot phen and Eu(hdacac)(6) center dot tta, where phen and tta denote 1,10-phenanthroline and thenoyltrifluoroacetone, respectively. These new compounds present long carbon chains and their expected miscibility into non-polar ambients is confirmed by the emission spectra of Eu(hdacac)6 center dot tta in hexane. Moreover, the amphiphilic properties of Eu(hdacac)6 complexes allow the obtainment of thin luminescent films by the Langmuir-Blodgett technique. In both cases (solids and films), the typical antenna effect of beta-diketonates is observed. The alluring characteristics of these compounds raise great interest in many fields of Materials Science, like photo- and electro-luminescent materials (mainly thin ""organic"" films), metal catalysts or probes in non-polar solutions, and Langmuir-Blodgett films of several compositions. For the characterization of these products, nuclear magnetic resonance spectroscopy ((1)H NMR), thermogravimetric analysis, elementary analyses (C, H), scanning electron microscopy (energy dispersive X-ray spectroscopy), absorption (UV-vis/FT-IR) and photoluminescence spectroscopies were used. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The aim of this study was to assess the influence of irradiation distance and the use of cooling in the Er:YAG laser efficacy in preventing enamel demineralization. Methods: 84 enamel blocks were randomly assigned to seven groups (n = 12): G1: control group - no treatment, G2-G7: experimental groups treated with Er:YAG laser (80 mJ/2 Hz) at different irradiation distances with or without cooling: G2: 4 mm/2 mL; G3: 4 mm/no cooling; G4: 8 mm/2 mL; G5: 8 mm/no cooling; G6: 16 mm/2 mL; G7: 16 mm/no cooling. The samples were submitted to an in vitro pH cycles for 14 days. Next, the specimens were sectioned in sections of 80-100 mu m in thickness and the demineralization patterns of prepared slices were assessed using a polarized light microscope. Three samples from each group were analyzed with scanning electronic microscopy. Analysis of variance and the Fisher test were performed for the statistical analysis of the data obtained from the caries-lesion-depth measurements (CLDM) (alpha = 5%). Results: The control group (CLDM = 0.67 mm) was statistically different from group 2 (CLDM = 0.42 mm), which presented a smaller lesion depth, and group 6 (0.91 mm), which presented a greater lesion depth. The results of groups 3 (CLDM = 0.74 mm), 4 (CLDM = 0.70 mm), 5 (CLDM = 0.67 mm) and 7 (CLDM = 0.89 mm) presented statistical similarity. The scanning electronic microscopy analysis showed ablation areas in the samples from groups 4, 5, 6 and 7, and a slightly demineralized area in group 2. Conclusions: It was possible to conclude that Er:YAG laser was efficient in preventing enamel demineralization at a 4-mm irradiation distance using cooling. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A pH indicator film based on cassava starch plasticized with sucrose and inverted sugar and incorporated with grape and spinach extracts as pH indicator sources (anthocyanin and chlorophyll) has been developed, and its packaging properties have been assessed. A second-order central composite design (2(2)) with three central points and four star points was used to evaluate the mechanical properties (tensile strength, tensile strength at break, and elongation at break percentage), moisture barrier, and microstructure of the films, and its potential as a pH indicator packaging. The films were prepared by the casting technique and conditioned under controlled conditions (75% relative humidity and 23 degrees C), at least 4 days before the analyses. The materials were exposed to different pH solutions (0, 2, 7, 10, and 14) and their color parameters (L*, a*, b*, and haze) were measured by transmittance. Grape and spinach extracts have affected the material characterization. Film properties (mechanical properties and moisture barrier) were strongly influenced by extract concentration presenting lower results than for the control. Films containing a higher concentration of grape extract presented a greater color change at different pH`s suggesting that anthocyanins are more effective as pH indicators than chlorophyll or the mixture of both extracts. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 1069-1079,2011
Resumo:
The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this preliminary work was to present a novel method, suitable to investigate the glass cooling, from melt to solid state, based on a fast, non-usual and easy microwave method. The following glass system xBaO . (100-x)B(2)O(3) (x = 0% and 40%) was selected as an example for this study. The melt was poured inside a piece of waveguide and then, its cooling was monitored by the microwave signal as a function of time. The variations in the signal can provide valuable informations about some structural changes that take place during the cooling stages, such as relaxation processes. This method can be useful to investigate the cooling and heating of other materials, opening new possibilities for investigation of dielectric behavior of materials under high temperatures. (C) 2008 Elsevier Inc. All rights reserved.