114 resultados para ZnO powder
Resumo:
The aim of this study was to validate an agar diffusion method through the parameters linearity, precision and accuracy, to quantify apramycin in soluble powder. The calibration curve of apramycin was constructed by plotting log of concentrations (mu g ml(-1)) versus zone diameter (mm) and shows good linearity in the range of 1.0-4.0 mu g.ml(-1). The precision of the assay was determined by assaying samples at the same day (repeatability - R.S.D. = 2.00%) and on different days (intermediate precision - R.S.D. = 5.06%) and indicate good precision. The accuracy expresses the agreement between the accepted value and the value found. The mean recovery was found to be 100.49 % for apramycin soluble powder. The results indicated that the microbiological assay proposed in this work hold linearity, precision and accuracy being an acceptable alternative method for routine quality control of apramycin in the pharmaceutical dosage form studied.
Resumo:
P>The aim of this comparative clinical study was to evaluate a novel bioactive glass-ceramic (Biosilicate (R) 1-20 mu m particles) to treat dentine hypersensitivity (DH). Volunteers (n = 120 patients/ 230 teeth) received the following treatments: G1-Sensodyne (R), G2-SensiKill (R), G3-Biosilicate (R) incorporated in a 1% water-free-gel and G4-Biosilicate (R) mixed with distilled water at 1:10 ratio. G1 and G3 were applied at home, daily for 30 days; G2 and G4 were applied once a week by a dentist (four applications). A visual analogue scale (VAS) was employed to evaluate pain for each quadrant in one sensitive tooth at baseline, weekly during treatment and during a 6-month follow-up period. Dentine hypersensitivity values (G1/n = 52), (G2/n = 62), (G3/n = 59) and (G4/n = 59) were analysed with Kruskal-Wallis/Dunn tests. All the products were efficient in reducing DH after 4 weeks. Among the four materials tested, G4 demonstrated the best clinical performance and provided the fastest treatment to reduce DH pain. Distilled water proved to be an adequate vehicle to disperse Biosilicate (R). Low DH scores were maintained during the 6-month follow-up period. The hypothesis that the novel bioactive glass-ceramic may be an efficient treatment for DH was confirmed.
Resumo:
Background: Formoterol is a fast-acting, long-acting beta-agonist. Its on-demand use by outpatients has been beneficial in controlling asthma. Objective: To evaluate the efficacy of formoterol as rescue medication for pediatric asthma exacerbation. Methods: A randomized, double-blind study was conducted on parallel groups involving 79 pediatric patients (mean [SD] age, 9.92 [2.5] years) with mild to moderate asthma exacerbations. They were treated with up to 3 doses of formoterol aerolizer, 12 mu g, or terbutaline Turbuhaler, 0.5 mg (dry powder inhalers). Respiratory rate, clinical score, pulse oximetry, and spirometry were analyzed at baseline and 15 minutes after administration of each bronchodilator dose. All the patients received oral prednisolone, 1 mg/kg, at study entry, followed by a single daily dose for 4 days. Forty-one patients were treated with formoterol and 38 with terbutaline. The groups were comparable in age and in severity of asthma exacerbation. Results: Both treatments resulted in similar clinical and functional improvement; 37 patients (47%) required 1 bronchodilator dose. Increases of 19.5% and 1.5.3% occurred in forced expiratory volume in 1 second in the formoterol and terbutaline groups, respectively. Therapeutic failures occurred in 2 patients. No adverse effects were observed. At 1-week follow-up, patients were stable, with pulmonary function close to normal. Conclusion: Formoterol therapy was at least as effective as terbutaline therapy in children and adolescents with mild and moderate asthma exacerbations. Ann Allergy Asthma Immunol. 2009; 103:248-253.
Resumo:
Objectives: To compare the response of human dental pulp capped with a mineral trioxide aggregate (MTA) and Ca(OH)(2) powder. Methods and Material: Pulp exposures were performed on the occlusal floor of 40 permanent premolars. The pulp was then capped with either Ca(OH)(2) powder (CH) or MTA and restored with resin composite. After 30 days (groups CH30 and MTA30) and 60 days (groups CH60 and MTA60), the teeth were extracted and processed for HE and categorized in a histological score system. The data were subjected to Kruskal-Wallis and Conover tests (alpha=0.05). Results: In regard to dentin bridge formation, CH30 showed a tendency towards superior performance compared to MTA30 (p>0.05), although the products showed comparable results at day 60. In the item ""Inflammation"" and ""General State of the Pulp"" (p>0.05), CH showed a tendency towards presenting a higher inflammatory response. In the item ""Other Pulpal Findings,"" MTA and Ca(OH)(2) showed equal and excellent performance after 30 and 60 days (p>0.05). Conclusion: After 30 days, Ca(OH)(2) powder covered with calcium hydroxide cement showed faster hard tissue bridge formation compared to MTA. After 60 days, Ca(OH)(2) powder or NITA materials showed a similar and excellent histological response with the formation of a hard tissue bridge in almost all cases with low inflammatory infiltrate.
Resumo:
Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.
Resumo:
The regular use of mouthrinses, particularly when combined with the use of air-powder polishing, could affect the appearance of tooth-colored restorations. The current study sought to evaluate the effect of NaHCO(3) powder on translucency of a microfilled composite resin immersed in different mouthrinses, at distinct evaluation periods. Eighty disk-shaped specimens of composite resin (Durafill VS, Heraeus Kulzer GmbH & Co. KG, Hanau, Germany) were prepared. The composite specimens were then randomly allocated into two groups according to the surface treatment: exposure to NaHCO(3) powder (10 seconds) or nonexposure, and they were randomly assigned into four subgroups, according to the mouthrinses employed (N = 10): Periogard (Colgate/Palmolive, Sao Bernardo do Campo, SP, Brazil), Cepacol (Aventis Pharma, Sao Paulo, SP, Brazil), Plax (Colgate/Palmolive), and distilled water (control group). The samples were immersed for 2 minutes daily, 5 days per week, over a 4-month test period. Translucency was measured with a transmission densitometer at seven evaluation periods. Statistical analyses (analysis of variance and Tukey`s test) revealed that: distilled water presented higher translucency values (86.72%); Periogard demonstrated the lowest translucency values (72.70%); and Plax (74.05%) and Cepacol (73.32%) showed intermediate translucency values, which were statistically similar between them (p > 0.01). NaHCO(3) air-powder polishing increased the changes in translucency associated with the mouthrinses. Air-powder polishing alone had no effect on material translucency. Translucency percent was gradually decreased from 1 week of immersion up to 4 months. It may be concluded that the NaHCO(3) powder and the tested mouthrinses have affected the translucency of microfilled composite resin, according to the tested time. CLINICAL SIGNIFICANCE During the last decade, the demand for composite resin restorations has grown considerably, however, controversy persists regarding the effect of surface roughness on color stability.
Resumo:
Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E`) and hardening and a decrease in Tan delta, while the garlic composite showed a diminishing in the E` and hardening and did not produce significant changes in Tan delta values when compared with systems without fillers (matrix). In the range between -90 degrees C and 20 degrees C. all the materials studied presented two peaks in the Tan delta curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T(gelatinization)) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Three different types of maltodextrin encapsulated dehydrated blackberry fruit powders were obtained using vibrofluidized bed drying (VF), spray drying (SD), vacuum drying (VD), and freeze drying (FD). Moisture equilibrium data of blackberry pulp powders with 18% maltodextrin were determined at 20, 30, 40, and 50 degrees C using the static gravimetric method for the water activity range of 0.06-0.90. Experimental equilibrium moisture content data versus water activity were fit to the Guggenheim-Anderson-de Boer (GAB) model. Agreement was found between experimental and calculated values. The isosteric heat of sorption of water was determined using the Clausius-Clapeyron equation from the equilibrium data; isosteric heats of sorption were found to increase with increasing temperature and could be adjusted by an exponential relationship. For freeze dried, vibrofluidized, and vacuum dried pulp powder samples, the isosteric heats of sorption were lower (more negative) than those calculated for spray dried samples. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of Delta H versus Delta S provided the isokinetic temperatures, indicating an enthalpy-controlled sorption process.
Resumo:
P>In this study, physical characteristics of goat milk powder produced with the addition of soy lecithin at levels of 0 (control), 0.4, 0.8 and 1.0 g lecithin/100 g of total solids in concentrated milk before the spray drying process were investigated. Goat milk was pasteurised, concentrated at 40% of total solids, spray dried and packed in plastic bags under vaccum conditions. Lecithin addition decreased the wetting time of milk powders, although no influence was observed on dispersibility, water sorption, water activity and particle size distribution of the powders. Powders with higher levels of lecithin showed significantly lower brightness, with a greater intensity of yellow colour. It was concluded that lecithin addition before spray drying process at the minimal proportion in concentrated milk of 0.4 g lecithin/100 g of total solids in concentrated milk is useful for achieving more rapid wetting time of goat milk powder.
Resumo:
This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants` were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit`s tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route. (c) 2007 Published by Elsevier B.V.
Resumo:
Nanocrystalline ZnO thin films prepared by the sol-gel dip-coating technique were characterized by grazing incidence X-ray diffraction (GIXD), atomic force microscopy (AFM), X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS). The structures of several thin films subjected to (i) isochronous annealing at 350, 450 and 550 degrees C, and (ii) isothermal annealing at 450 degrees C during different time periods, were characterized. The studied thin films are composed of ZnO nanocrystals as revealed by analysing several GIXD patterns, from which their average sizes were determined. Thin film thickness and roughness were determined from quantitative analyses of AFM images and XR patterns. The analysis of XR patterns also yielded the average density of the studied films. Our GISAXS study indicates that the studied ZnO thin films contain nanopores with an ellipsoidal shape, and flattened along the direction normal to the substrate surface. The thin film annealed at the highest temperature, T = 550 degrees C, exhibits higher density and lower thickness and nanoporosity volume fraction, than those annealed at 350 and 450 degrees C. These results indicate that thermal annealing at the highest temperature (550 degrees C) induces a noticeable compaction effect on the structure of the studied thin films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Magnetic properties of nanocrystalline NiFe(2)O(4) spinel mechanically processed for 350 h have been studied using temperature dependent from both zero-field and in-field (57)Fe Mossbauer spectrometry and magnetization measurements. The hyperfine structure allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core, which has magnetic properties similar to the NiFe(2)O(4) spinel-like structure (n-NiFe(2)O(4)) and the other one due to the disordered grain boundary region, which presents topological and chemical disorder features(d-NiFe(2)O(4)). Mossbauer spectrometry determines a large fraction for the d-NiFe(2)O(4) region(62% of total area) and also suggests a speromagnet-like structure for it. Under applied magnetic field, the n-NiFe(2)O(4) spins are canted with angle dependent on the applied field magnitude. Mossbauer data also show that even under 120 kOe no magnetic saturation is observed for the two magnetic phases. In addition, the hysteresis loops, recorded for scan field of 50 kOe, are shifted in both field and magnetization axes, for temperatures below about 50 K. The hysteresis loop shifts may be due to two main contributions: the exchange bias field at the d-NiFe(2)O(4)/n-NiFe(2)O(4) interfaces and the minor loop effect caused by a high magnetic anisotropy of the d-NiFe(2)O(4) phase. It has also been shown that the spin configuration of the spin-glass like phase is modified by the consecutive field cycles, consequently the n-NiFe(2)O(4)/d-NiFe(2)O(4) magnetic interaction is also affected in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
ZnO nanocrystals are studied using theoretical calculations based on the density functional theory. The two main effects related to the reduced size of the nanocrystals are investigated: quantum confinement and a large surface:volume ratio. The effects of quantum confinement are studied by saturating the surface dangling bonds of the nanocrystals with hypothetical H atoms. To understand the effects of the surfaces of the nanocrystals, all saturation is removed and the system is relaxed to its minimum energy position. Several different surface motifs are reported, which should be observed experimentally. Spin-polarized calculations are performed in the nonsaturated nanocrystals, leading to different magnetic moments. We propose that this magnetic moment can be responsible for the intrinsic magnetism observed in ZnO nanostructures.
Resumo:
A robust, direct, rapid and non-destructive X-ray diffraction crystallography method to detect the polyprenylated benzophenones 7-epi-clusianone (1) and guttiferone A (2) in extracts from Garcinia brasiliensis is presented. Powder samples of benzophenones 1 and 2, dried hexane extracts from G. brasiliensis seeds and fruit`s pericarp, and the dried ethanolic extract from G. brasiliensis seeds were unambiguously characterized by powder X-ray diffractometry. The calculated X-ray diffraction peaks from crystal structures of analytes 1 and 2, previously determined by single-crystal X-ray diffraction technique, were overlaid to those of the experimental powder diffractograms, providing a practical identification of these compounds in the analyzed material and confirming the pure contents of the powder samples. Using the X-ray diffraction crystallography method, the studied polyprenylated benzophenones were selectively and simultaneously detected in the extracts which were mounted directly on sample holder. In addition, reference materials of the analytes were not required for analyses since the crystal structures of the compounds are known. High performance liquid chromatography analyses also were comparatively carried out to quantify the analytes in the same plant extracts showing to be in agreement with X-ray diffraction crystallography method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Bendadaite, ideally Fe(2+)Fe(2)(3+)(AsO(4))(2)(OH)(2 center dot).4H(2)O, is a new member of the arthurite group It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada. central Portugal (type locality) Co-type locality is the granite pegmatite of La via do Almerindo (Almerindo mine), Linopolis, Divmo das Laranjeiras county, Minas Gerais, Brazil Further localities are the Vein Negra mine, Copiapo province, Chile, mid-East, Bou Azzer district, Morocco, and Para Inferida yard, Fenugu Sibirt mine, Gonnosfanadiga, Medio Campidano Province, Sardinia. Italy Type bendadaite occurs as blackish green to dark brownish tufts (<0 1 mm long) and flattened radiating aggregates. in intimate association with an intermediate member of the scorodite-mansfieldite series It is monoclinic. space group P2(l/c). with a = 10 239(3) angstrom. b = 9 713(2) angstrom, c = 5 552(2) angstrom. beta = 94 11(2)degrees. = 550 7(2) angstrom(3). Z = 2 Electron-microprobe analysis yielded (wt %). CaO 0 04, MnO 0 03. CuO 006, ZnO 004. Fe(2)O(3) (total) 43 92, Al(2)O(3) 115. SnO(2) 0 10, As(2)O(5) 43 27. P(2)O(5) 1 86, SO(3) 0.03 The empirical formula is (Fe(0 52)(2+)Fe(0 32)(3+)rectangle(0 16))(Sigma 1 00)(Fe(1 89)(3+)Al(0 11))(Sigma 2 00)(As(1 87)P(0 13))(Sigma 2 00)O(8)(OH)(2 00) 4H(2)O based. CM 2(As,P) and assuming ideal 80, 2(OH), 4H2O and complete occupancy of the ferric on site by Fe(3+) and Al Optically, bendadaite is biaxial, positive, 2V(est) = 85+/-4 degrees, 2V(eale) = 88 degrees, with alpha 1 734(3). 13 1 759(3), 7 1 787(4) Pleochrosim is medium strong X pale reddish brown. Y yellowish brown, Z dark yellowish brown. absorption Z > V > X, optical dispersion weak, r > v. Optical axis plane Is parallel to (010), with X approximately parallel to a and Z nearly parallel to c Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent It is brittle, shows irregular fracture and a good cleavage parallel to 1010} 3 15 0 10 g/cm(3), 3 193 g/cm3 (for the empirical formula) The five strongest powder diffraction lines [d in angstrom (I)(hkl] are 10 22 (10)(100), 7 036 (8)(110), 4 250 (5)(11 I), 2 865 (4)(311), 4 833 (3)(020,011) The d spacings are very similar to those of its Zn analogue, ojelaite The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe(0 95)(2+)rectangle(0 05))(Sigma 1 00)(Fe(1 80)(3+)Al(0 20))Sigma(2 00)(As(1 48)P(0 52))(Sigma 2 00)O(8)) (OH)(2) 4H(2)O (R = 16%) and confirms an arthurite-type atomic arrangement