21 resultados para Underwater robotics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonometry seems to have a future for the evaluation of fracture healing. Ultrasound propagation velocity (USPV) significantly decreases at the same time that bone diameter decreases as healing takes place, thus approaching normal values. In this investigation, both USPV and broadband ultrasound attenuation (BUA) were measured using a model of a transverse mid-diaphyseal osteotomy of sheep tibiae. Twenty-one sheep were operated and divided into three groups of seven, according to the follow-up period of 30, 60, and 90 days, respectively. The progress of healing of the osteotomy was checked with monthly conventional radiographs. The animals were killed at the end of the period of observation of each group, both operated-upon and intact tibiae being resected and submitted to the measurement of underwater transverse and direct contact transverse and longitudinal USPV and BUA at the osteotomy site. The intact left tibia of the 21 animals was used for control, being examined on a symmetrical diaphyseal segment. USPV increased while BUA decreased with the progression of healing, with significant differences between the operated and untouched tibiae and between the periods of observation, for most of the comparisons. There was a strong negative correlation between USPV and BUA. Both USPV and BUA directly reflect and can help predict the healing of fractures, but USPV alone can be used as a fundamental parameter. Ultrasonometry may be of use in clinical application to humans provided adequate adaptations can be developed. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:444-451, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Localization and Mapping are two of the most important capabilities for autonomous mobile robots and have been receiving considerable attention from the scientific computing community over the last 10 years. One of the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF algorithm that is capable of processing two-dimensional maps containing up to 1.8 k features at real time (14 Hz), a three-fold improvement over a Pentium M 1.6 GHz, and a 13-fold improvement over an ARM920T 200 MHz. The proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a parallel hardware architecture for image feature detection based on the Scale Invariant Feature Transform algorithm and applied to the Simultaneous Localization And Mapping problem. The work also proposes specific hardware optimizations considered fundamental to embed such a robotic control system on-a-chip. The proposed architecture is completely stand-alone; it reads the input data directly from a CMOS image sensor and provides the results via a field-programmable gate array coupled to an embedded processor. The results may either be used directly in an on-chip application or accessed through an Ethernet connection. The system is able to detect features up to 30 frames per second (320 x 240 pixels) and has accuracy similar to a PC-based implementation. The achieved system performance is at least one order of magnitude better than a PC-based solution, a result achieved by investigating the impact of several hardware-orientated optimizations oil performance, area and accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Navigation is a broad topic that has been receiving considerable attention from the mobile robotic community over the years. In order to execute autonomous driving in outdoor urban environments it is necessary to identify parts of the terrain that can be traversed and parts that should be avoided. This paper describes an analyses of terrain identification based on different visual information using a MLP artificial neural network and combining responses of many classifiers. Experimental tests using a vehicle and a video camera have been conducted in real scenarios to evaluate the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.