37 resultados para Tat peptide translocation
Resumo:
Studies on the therapeutic potential of venom peptides have significantly advanced the development of new peptide drugs. A good example is captopril, a synthetic peptide drug, which acts as an anti-hypertensive and potentiating bradykinin, inhibiting the angiotensin-converting enzyme, whose precursor was isolated from the venom of Bothrops jararacussu. The natriuretic peptide (NPs) family comprises three members, ANP (atrial natriuretic peptide), BNP (B-type natriuretic peptide) and CNP (C-type natriuretic peptide), and has an important role in blood pressure regulation and electrolyte homeostasis. In this study, we describe, for the first time, the isolation and characterization of a novel natriuretic-like peptide (Coa_NP), isolated from Crotalus Oreganus abyssus venom. The peptide has 32 amino acids and its complete sequence is SKRLSNGCFGLKLDRIGAMSGLGCWRLINESK. The Coa_NP has an average molecular mass of 3510.98 Da and its amino acid sequence presents the loop region that is characteristic of natriuretic peptides (17 amino acids, NP domain consensus; CFGXXXDRIXXXSGLGC). Coa_NP is a natriuretic peptide of the ANP/BNP-like family, since the carboxy terminal region of CNP has its own NP domain. The functional experiments showed that Coa_NP produced biological effects similar to those of the other natriuretic peptides: (1) a dose-dependent decrease in mean arterial pressure; (2) significant increases in plasma nitrite levels, and (3) vasorelaxation in thoracic aortic rings that were pre-contracted with phenylephrine. The structural and biological aspects confirm Coa_NP as a natriuretic peptide isolated from snake venom, thus expanding the diversification of venom components.
Resumo:
The present work evaluates both in vitro and in vivo antitumor activity of BPB-modified BthTX-I and its cationic synthetic peptide derived from the 115-129 C-terminal region. BPB-BthTX-1 presented cytotoxicity of 10-40% on different tumor cell lines, which were also susceptible to the lytic action of the synthetic peptide. Injection of the modified protein or the peptide in mice, 5 days after transplantation of S 180 tumor cells, reduced 30 and 36% of the tumor size on day 14th and 76 and 79% on day 60th, respectively, when compared to the untreated control group. Thus, these antitumor properties might be of interest in the development of therapeutic strategies against cancer. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH(2), DS 01) with phospholipid (PL) monolayers comprising (i) a lipid-rich extract of Leishmania amazonensis (LRE-La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid-air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE-La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 mu g/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE-La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis. Copyright (C) 2011 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
In this work the interaction of the antimicrobial peptide indolicidin (IND) and its mutants CP10A and CP11 with a eukaryotic membrane model was examined by molecular dynamics simulations. The aim was to analyse the behaviour of these antimicrobial peptides when they interact with a eukaryotic modelled membrane, thereby obtaining atomic detailed observations that are not experimentally available. In the simulations, the widely studied dipalmitoylphosphatidylcholine hydrated bilayer was used as a eukaryotic membrane model. In agreement with experimental observations, the peptides IND, CP10A, and CP11 insert into the bilayer differently; the peptides that insert more deeply present the major hemolytic activities. The hydrophobic residues are responsible for the insertion, but some Trp residues of the peptides remain at the bilayer/water interface because they interact with the bilayer choline groups by cation-pi interactions that should be important for recognition of eukaryotic membrane by the three studied peptides.
Resumo:
Objective: GH secretagogues (GHS) produce exaggerated ACTH and cortisol responses in Cushing`s disease (CD) patients, attributable to their direct action on GH-releasing peptide receptor type la (GHSR-1a). However, there are no studies correlating the ill vivo response to GHS and GHSR-1a mRNA expression in ACTH-dependent Cushing`s syndrome (CS) patients. The aim of this study is to correlate the patterns of ACTH and cortisol response to GH-releasing peptide-6 (GHRP-6) to GHSR-1a expression in ACTH-dependent CS patients Design: Prospective study in a tertiary referral hospital center. Fifteen CD patients and two ectopic ACTH syndrome (EAS) patients were studied. Methods: Tumor fragments were submitted to RNA extraction, and GHSR-1a expression was studied through real-time qPCR and compared with normal tissue samples. The patients were also submitted to desmopressin test and vasopressin receptor type 1B (AVPR1B) mRNA analysis by qPCR. Results: GHSR-1a expression was similar in normal pituitary samples and in corticotrophic tumor samples. GHSR-1a expression was higher in patients (CD and EAS) presenting ill vivo response to GHRP-6. Higher expression of AVPR1B was observed in the EAS patients responsive to desmopressin, as well as in corticotrophic tumors, as compared with normal pituitary samples, but no correlation between AVPR1B expression and response to desmopressin was observed in the CD patients. Conclusions: Our results revealed a higher expression of GHSR-1a in the ACTH-dependent CS patients responsive to GHRP-6, suggesting an association between receptor gene expression and ill vivo response to the secretagogue in both the CD and the EAS patients.
Resumo:
GUALANO, B., V. DE. SALLES PAINNELI, H. ROSCHEL, G. G. ARTIOLI, M. NEVES JR, A. L. DE SA PINTO, M. E. DA SILVA, M. R. CUNHA, M. C. G. OTADUY, C. DA COSTA LEITE, J. C. FERREIRA, R. M. PEREIRA, P. C. BRUM, E. BONFA, and A. H. LANCHA JR. Creatine in Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Med. Sci. Sports Exerc., Vol. 43, No. 5, pp. 770-778, 2011. Creatine supplementation improves glucose tolerance in healthy subjects. Purposes: The aim was to investigate whether creatine supplementation has a beneficial effect on glycemic control of type 2 diabetic patients undergoing exercise training. Methods: A 12-wk randomized, double-blind, placebo-controlled trial was performed. The patients were allocated to receive either creatine (CR) (5 g.d(-1)) or placebo (PL) and were enrolled in an exercise training program. The primary outcome was glycosylated hemoglobin (Hb(A1c)). Secondary outcomes included the area under the curve of glucose, insulin, and C-peptide and insulin sensitivity indexes. Physical capacity, lipid profile, and GLUT-4 protein expression and translocation were also assessed. Results: Twenty-five subjects were analyzed (CR: n = 13; PL: n = 12). Hb(A1c) was significantly reduced in the creatine group when compared with the placebo group (CR: PRE = 7.4 +/- 0.7, POST = 6.4 +/- 0.4; PL: PRE = 7.5 +/- 0.6, POST = 7.6 +/- 0.7; P = 0.004; difference = -1.1%, 95% confidence interval = -1.9% to -0.4%). The delta area under the curve of glucose concentration was significantly lower in the CR group than in the PL group (CR = -7790 +/- 4600, PL = 2008 +/- 7614; P = 0.05). The CR group also presented decreased glycemia at times 0, 30, and 60 min during a meal tolerance test and increased GLUT-4 translocation. Insulin and C-peptide concentrations, surrogates of insulin sensitivity, physical capacity, lipid profile, and adverse effects were comparable between the groups. Conclusions: Creatine supplementation combined with an exercise program improves glycemic control in type 2 diabetic patients. The underlying mechanism seems to be related to an increase in GLUT-4 recruitment to the sarcolemma.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Resumo:
Background and objective: Light`s criteria are frequently used to evaluate the exudative or transudative nature of pleural effusions. However, misclassification resulting from the use of Light`s criteria has been reported, especially in the setting of diuretic use in patients with heart failure (HF). The objective of this study was to evaluate the utility of B-type natriuretic peptide (BNP) measurements as a diagnostic tool for determining the cardiac aetiology of pleural effusions. Methods: Patients with pleural effusions attributable to HF (n = 34), hepatic hydrothorax (n = 10), pleural effusions due to cancer (n = 21) and pleural effusions due to tuberculosis (n = 12) were studied. Diagnostic thoracentesis was performed for all 77 patients. Receiver operating characteristic (ROC) curves were constructed to determine the diagnostic accuracy of plasma BNP and pleural fluid BNP for the prediction of HF. Results: The areas under the ROC curves were 0.987 (95% CI 0.93-0.998) for plasma BNP and 0.949 (95% CI 0.874-0.986) for pleural fluid BNP, for distinguishing between patients with pleural effusions caused by HF (n = 34) and those with pleural effusions attributable to other causes (n = 43). The cut-off concentrations with the highest diagnostic accuracy for the diagnosis of HF as the cause of pleural effusion were 132 pg/mL for plasma BNP (sensitivity 97.1%, specificity 97.4%) and 127 pg/mL for pleural fluid BNP (sensitivity 97.1%, specificity 87.8%). Conclusions: In patients with pleural effusions of suspected cardiac origin, measurements of BNP in plasma and pleural fluid may be useful for the diagnosis of HF as the underlying cause.
Resumo:
Cells produce and use peptides in distinctive ways. In the present report, using isotope labeling plus semi-quantitative mass spectrometry, we evaluated the intracellular peptide profile of TAP1/beta 2m(-/-) (transporter associated with antigen-processing 1/beta 2 microglobulin) double-knockout mice and compared it with that of C57BL/6 wild-type animals. Overall, 92 distinctive peptides were identified, and most were shown to have a similar concentration in both mouse strains. However, some peptides showed a modest increase or decrease (similar to 2-fold), whereas a glycine-rich peptide derived from the C-terminal of neurogranin (KGPGPGGPGGAGGARGGAGGGPSGD) showed a substantial increase (6-fold) in TAP1/beta 2m(-/-) mice. Thus, TAP1 and beta 2microglobulin have a small influence on the peptide profile of neuronal tissue, suggesting that the presence of peptides derived from intracellular proteins in neuronal tissue is not associated with antigens of the class I major histocompatibility complex. Therefore, it is possible that these intracellular peptides play a physiological role.
Resumo:
Peptides constitute the largest group of Hymenoptera venom toxins; some of them interact with GPCR, being involved with the activation of different types of leukocytes, smooth muscle contraction and neurotoxicity. Most of these toxins vary from dodecapeptides to tetradecapeptides, amidated at their C-teminal amino acid residue. The venoms of social wasps can also contains some tetra-, penta-, hexa- and hepta-peptides, but just a few of them have been structurally and functionally characterized up to now. Protonectin (ILG-TILGLLKGL-NH(2)) is a polyfunctional peptide, presenting mast cell degranulation, release of lactate dehydrogenase (LDH) from mast cells, antibiosis against Gram-positive and Gram-negative bacteria and chemotaxis for polymorphonucleated leukocytes (PMNL), while Protonectin (1-6) (ILGTIL-NH(2)) only presents chemotaxis for PMNL However, the mixture of Protonectin (1-6) with Protonectin in the molar ratio of 1:1 seems to potentiate the biological activities dependent of the membrane perturbation caused by Protonectin, as observed in the increasing of the activities of mast cell degranulation, LDH releasing from mast cells, and antibiosis. Despite both peptides are able to induce PMNL chemotaxis, the mixture of them presents a reduced activity in comparison to the individual peptides. Apparently, when mixed both peptides seems to form a supra-molecular structure, which interact with the receptors responsible for PMNL chemotaxis, disturbing their individual docking with these receptors. In addition to this, a comparison of the sequences of both peptides suggests that the sequence ILGTIL is conserved, suggesting that it must constitute a linear motif for the structural recognition by the specific receptor which induces leukocytes migration. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301: F355-F363, 2011. First published May 18, 2011; doi: 10.1152/ajprenal.00729.2010.-Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 mu g.kg(-1).min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.
Resumo:
Glucose-dependent insulinotropic peptide receptor (GIPR) and LHCGR are G-protein-coupled receptors with a wide tissue expression pattern. Aberrant expression of these receptors has rarely been demonstrated in adult sporadic adrenocortical tumors with a lack of data on pediatric tumors. We quantified the GIPR and LHCGR expression in a large cohort of 55 patients (25 children and 30 adults) with functioning and non-functioning sporadic adrenocortical tumors. Thirty-eight tumors were classified as adenomas whereas 17 were carcinomas. GIPR, and LHCGR expression were analyzed by real-time PCR and normal human pancreatic and testicular tissue samples were used as positive controls. Mean expression values were determined by fold increase in comparison with a normal adrenal pool. GIPR mRNA levels were significantly higher in adrenocortical carcinomas than in adenomas from both pediatric and adult groups. LHCGR expression was similar in both carcinomas and adenomas from the pediatric group but significantly lower in carcinomas than in adenomas from the adult group (median 0.06 and 2.3 respectively, P<0.001). GIPR was detected by immunohistochemistry in both pediatric and adult tumors. Staining and real-time PCR results correlated positively only when GIPR in RN A levels were increased at least two-fold in comparison with normal adrenal expression levels. In Conclusion, GIPR overexpression was observed in pediatric and adult adrenocortical tumors and very low levels of LHCGR expression were found in all adult adrenocortical carcinomas.
Resumo:
Recently we have shown that BhSGAMP-1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20-OH ecdysone. This control probably involves the participation of short-lived repressor(s). We also found that the promoter of BhSGAMP-1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP-1 peptide is secreted in the saliva. The BhSGAMP-1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect`s immediate vicinity, during molts. genesis 47:847-857, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.