100 resultados para Sweep algorithms
Resumo:
In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n vertices and m edges. To count the number of all the maximal cliques, without actually generating them, our algorithm requires O(log p) communication rounds with O(nm/p) local computation time. We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation, and to generate each one of the subsequent maximal cliques this algorithm requires O(log p) communication rounds with O(m/p) local computation. The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present an algorithm for this problem that uses O(log p) communication rounds with O(m/p) local computation for each maximal path. We also show that the presented algorithms can be extended to the CREW PRAM model.
Resumo:
For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A bipartite graph G = (V, W, E) is convex if there exists an ordering of the vertices of W such that, for each v. V, the neighbors of v are consecutive in W. We describe both a sequential and a BSP/CGM algorithm to find a maximum independent set in a convex bipartite graph. The sequential algorithm improves over the running time of the previously known algorithm and the BSP/CGM algorithm is a parallel version of the sequential one. The complexity of the algorithms does not depend on |W|.
Resumo:
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.
Resumo:
A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.
Resumo:
OBJETIVO: Desenvolver simulação computadorizada de ablação para produzir lentes de contato personalizadas a fim de corrigir aberrações de alta ordem. MÉTODOS: Usando dados reais de um paciente com ceratocone, mensurados em um aberrômetro ("wavefront") com sensor Hartmann-Shack, foram determinados as espessuras de lentes de contato que compensam essas aberrações assim como os números de pulsos necessários para fazer ablação as lentes especificamente para este paciente. RESULTADOS: Os mapas de correção são apresentados e os números dos pulsos foram calculados, usando feixes com a largura de 0,5 mm e profundidade de ablação de 0,3 µm. CONCLUSÕES: Os resultados simulados foram promissores, mas ainda precisam ser aprimorados para que o sistema de ablação "real" possa alcançar a precisão desejada.
Resumo:
OBJETIVO: Desenvolver a instrumentação e o "software" para topografia de córnea de grande-ângulo usando o tradicional disco de Plácido. O objetivo é permitir o mapeamento de uma região maior da córnea para topógrafos de córnea que usem a técnica de Plácido, fazendo-se uma adaptação simples na mira. MÉTODOS: Utilizando o tradicional disco de Plácido de um topógrafo de córnea tradicional, 9 LEDs (Light Emitting Diodes) foram adaptados no anteparo cônico para que o paciente voluntário pudesse fixar o olhar em diferentes direções. Para cada direção imagens de Plácido foram digitalizadas e processadas para formar, por meio de algoritmo envolvendo elementos sofisticados de computação gráfica, um mapa tridimensional completo da córnea toda. RESULTADOS: Resultados apresentados neste trabalho mostram que uma região de até 100% maior pode ser mapeada usando esta técnica, permitindo que o clínico mapeie até próximo ao limbo da córnea. São apresentados aqui os resultados para uma superfície esférica de calibração e também para uma córnea in vivo com alto grau de astigmatismo, mostrando a curvatura e elevação. CONCLUSÃO: Acredita-se que esta nova técnica pode propiciar a melhoria de alguns processos, como por exemplo: adaptação de lentes de contato, algoritmos para ablações costumizadas para hipermetropia, entre outros.
Resumo:
OBJETIVO: Estimar valores de referência e função de hierarquia de docentes em Saúde Coletiva do Brasil por meio de análise da distribuição do índice h. MÉTODOS: A partir do portal da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 934 docentes foram identificados em 2008, dos quais 819 foram analisados. O índice h de cada docente foi obtido na Web of Science mediante algoritmos de busca com controle para homonímias e alternativas de grafia de nome. Para cada região e para o Brasil como um todo ajustou-se função densidade de probabilidade exponencial aos parâmetros média e taxa de decréscimo por região. Foram identificadas medidas de posição e, com o complemento da função probabilidade acumulada, função de hierarquia entre autores conforme o índice h por região. RESULTADOS: Dos docentes, 29,8% não tinham qualquer registro de citação (h = 0). A média de h para o País foi 3,1, com maior média na região Sul (4,7). A mediana de h para o País foi 2,1, também com maior mediana na Sul (3,2). Para uma padronização de população de autores em cem, os primeiros colocados para o País devem ter h = 16; na estratificação por região, a primeira posição demanda valores mais altos no Nordeste, Sudeste e Sul, sendo nesta última h = 24. CONCLUSÕES: Avaliados pelos índices h da Web of Science, a maioria dos autores em Saúde Coletiva não supera h = 5. Há diferenças entres as regiões, com melhor desempenho para a Sul e valores semelhantes entre Sudeste e Nordeste.
Resumo:
Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as the local influence, total local influence of an individual, local influence on predictions and generalized leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates. The relevance of the approach was illustrated with a real data set, where it is shown that, by removing the most influential observations, the decision about which model best fits the data is changed.
Resumo:
The objective of this manuscript is to discuss the existing barriers for the dissemination of medical guidelines, and to present strategies that facilitate the adaptation of the recommendations into clinical practice. The literature shows that it usually takes several years until new scientific evidence is adopted in current practice, even when there is obvious impact in patients' morbidity and mortality. There are some examples where more than thirty years have elapsed since the first case reports about the use of a effective therapy were published until its utilization became routine. That is the case of fibrinolysis for the treatment of acute myocardial infarction. Some of the main barriers for the implementation of new recommendations are: the lack of knowledge of a new guideline, personal resistance to changes, uncertainty about the efficacy of the proposed recommendation, fear of potential side-effects, difficulties in remembering the recommendations, inexistence of institutional policies reinforcing the recommendation and even economical restrains. In order to overcome these barriers a strategy that involves a program with multiple tools is always the best. That must include the implementation of easy-to-use algorithms, continuous medical education materials and lectures, electronic or paper alerts, tools to facilitate evaluation and prescription, and periodic audits to show results to the practitioners involved in the process. It is also fundamental that the medical societies involved with the specific medical issue support the program for its scientific and ethical soundness. The creation of multidisciplinary committees in each institution and the inclusion of opinion leaders that have pro-active and lasting attitudes are the key-points for the program's success. In this manuscript we use as an example the implementation of a guideline for venous thromboembolism prophylaxis, but the concepts described here can be easily applied to any other guideline. Therefore, these concepts could be very useful for institutions and services that aim at quality improvement of patient care. Changes in current medical practice recommended by guidelines may take some time. However, if there is a broader participation of opinion leaders and the use of several tools listed here, they surely have a greater probability of reaching the main objectives: improvement in provided medical care and patient safety.
Resumo:
Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.
Resumo:
Despite the wide distribution of transposable elements (TEs) in mammalian genomes, part of their evolutionary significance remains to be discovered. Today there is a substantial amount of evidence showing that TEs are involved in the generation of new exons in different species. In the present study, we searched 22,805 genes and reported the occurrence of TE-cassettes in coding sequences of 542 cow genes using the RepeatMasker program. Despite the significant number (542) of genes with TE insertions in exons only 14 (2.6%) of them were translated into protein, which we characterized as chimeric genes. From these chimeric genes, only the FAST kinase domains 3 (FASTKD3) gene, present on chromosome BTA 20, is a functional gene and showed evidence of the exaptation event. The genome sequence analysis showed that the last exon coding sequence of bovine FASTKD3 is similar to 85% similar to the ART2A retrotransposon sequence. In addition, comparison among FASTKD3 proteins shows that the last exon is very divergent from those of Homo sapiens, Pan troglodytes and Canis familiares. We suggest that the gene structure of bovine FASTKD3 gene could have originated by several ectopic recombinations between TE copies. Additionally, the absence of TE sequences in all other species analyzed suggests that the TE insertion is clade-specific, mainly in the ruminant lineage.
Resumo:
This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM-PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [ the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h(-1) ( PR) and -0.157 mm h(-1)(S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 ( PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM-Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h(-1). NESDIS(1) overestimated for both wind regimes but presented the best westerly representation. NESDIS(2), GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.