31 resultados para Structural-properties


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid reflections (HRs) involving substrate and layer planes (SL type) [Morelhao et al., Appl. Phys. Len. 73 (15), 2194 (1998)] observed in Chemical Beam Epitaxy (CBE) grown InGaP/GaAs(001) structures were used as a three-dimensional probe to analyze structural properties of epitaxial layers. A set of (002) rocking curves (omega-scan) measured for each 15 degrees in the azimuthal plane was arranged in a pole diagram in phi for two samples with different layer thicknesses (#A -58 nm and #B - 370 nm) and this allowed us to infer the azimuthal epilayer homogeneity in both samples. Also, it was shown the occurrence of (1 (1) over bar3) HR detected even in the thinner layer sample. Mappings of the HR diffraction condition (omega:phi) allowed to observe the crystal truncation rod through the elongation of HR shape along the substrate secondary reflection streak which can indicate in-plane match of layer/substrate lattice parameters. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barbaloin is a bioactive glycosilated 1,8-dihydroxyanthraquinone present in several exudates from plants, Such as Aloe vera, which are used for cosmetic or food purposes. It has been shown that barbaloin interacts with DMPG (dimyristoylphosphatidylglycerol) model membranes, altering the bilayer structure (Alves, D. S.; Perez-Fons, L.; Estepa, A.; Micol, V. Biochem. Pharm. 2004, 68, 549). Considering that ESR (electron spin resonance) of spin labels is one of the best techniques to monitor structural properties at the molecular level, the alterations caused by the anthraquinone barbaloin on phospholipid bilayers will be discussed here via the ESR signal of phospholipid spin probes intercalated into the membranes. In DMPG at high ionic strength (10 mM Hepes pH 7.4 + 100 mM NaCl), a system that presents a gel-fluid transition around 23 degrees C, 20 mol % barbaloin turns the gel phase more rigid, does not alter much the fluid phase packing, but makes the lipid thermal transition less sharp. However, in a low-salt DMPG dispersion (10 mM Hepes pH 7.4 + 2 mM NaCl), which presents a rather complex gel-fluid thermal transition (Lamy-Freund, M. T.; Riske, K. A. Chem. Phys. Lipids 2003, 122, 19), barbaloin strongly affects bilayer structural properties, both in the gel and fluid phases, extending the transition region to much higher temperature values. The position of barbaloin in DMPG bilayers will be discussed on the basis of ESR results, in parallel with data from sample viscosity, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(i) The electronic and structural properties of boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by ab initio total energy calculations. In (i) we find that the structural deformations are very localized around the boron substitutional sites, and in accordance with previous studies (Endo et al 2001 J. Appl. Phys. 90 5670) there is an increase of the electronic density of states near the Fermi level. Our simulated scanning tunneling microscope (STM) images, for occupied states, indicate the formation of bright (triangular) spots lying on the substitutional boron (center) and nearest-neighbor carbon (edge) sites. Those STM images are attributed to the increase of the density of states within an energy interval of 0.5 eV below the Fermi level. For a boron concentration of similar to 2.4%, we find that two boron atoms lying on the opposite sites of the same hexagonal ring (B1-B2 configuration) represents the energetically most stable configuration, which is in contrast with previous theoretical findings. Having determined the energetically most stable configuration for substitutional boron atoms on graphene sheets, we next considered the hydrogen adsorption process as a function of the boron concentration, (ii). Our calculated binding energies indicate that the C-H bonds are strengthened near boron substitutional sites. Indeed, the binding energy of hydrogen adatoms forming a dimer-like structure on the boron doped B1-B2 graphene sheet is higher than the binding energy of an isolated H(2) molecule. Since the formation of the H dimer-like structure may represent the initial stage of the hydrogen clustering process on graphene sheets, we can infer that the formation of H clusters is quite likely not only on clean graphene sheets, which is in consonance with previous studies (Hornekaer et al 2006 Phys. Rev. Lett. 97 186102), but also on B1-B2 boron doped graphene sheets. However, for a low concentration of boron atoms, the formation of H dimer structures is not expected to occur near a single substitutional boron site. That is, the formation (or not) of H clusters on graphene sheets can be tuned by the concentration of substitutional boron atoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of natural substances in health applications may be hampered by the difficulties in establishing the mechanisms of action, especially at molecular-level. The protein-polysaccharide complex extracted from the mushroom Agaricus blazei Murill, referred to as CAb, has been considered for treating various diseases with probable interaction with cell membranes. In this study, we investigate the interaction between CAb and a cell membrane model represented by a Langmuir monolayer of dimyristoyl phosphatidic acid (DMPA). CAb affects the structural properties of DMPA monolayers causing expansion and increasing compressibility. In addition, interaction with DMPA polar heads led to neutralization of the electrical double layer, yielding a zero surface potential at large areas per molecule. CAb remained at the interface even at high surface pressures, which allowed transfer of Langmuir-Blodgett (LB) films onto solid supports with the CAb-DMPA mixture. The mass transferred, according to quartz crystal microbalance (QCM) measurements, increased linearly with the number of deposited layers. With UV-vis absorption, fluorescence and FTIR spectroscopies, we confirmed that the LB films contain polysaccharides, proteins and DMPA. Therefore, the CAb biological action must be attributed not only to polysaccharides but also to proteins in the complex. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Perovskite-structured Ba(0.90)Ca(0.10)(Ti(1-x)Zr(x))O(3) ceramics were prepared in this work and subsequently studied in terms of composition-dependent dielectric and high-resolution long-range order structural properties from 30 to 450 K. The dielectric response of these materials was measured at several frequencies in the range from 1 kHz to 1 MHz. Combining both techniques, including Rietveld refinement of the X-ray diffraction data, allowed observing that, when increasing Zr(4+) content, the materials change from conventional to diffuse and relaxor ferroelectric compounds, the transition occurring spontaneously at the x = 0.18 composition. Interestingly, this spontaneous transition turned out to be prevented for a further increase of Zr(4+). On the basis of all the dielectric and structural results processed, a phase diagram of this system is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two coordination octahedral Sn(IV) complexes [Sn(L)(2)] and cis-[SnCl(2)(L)(dmso)], where H(2)L is 2-hydroxyacetophenone (S-benzydithiocarbazate), were prepared and characterized by elemental analysis, IR, NMR ((1)H, (13)C), (119)Sn Mossbauer spectroscopies and X-ray diffraction techniques to investigate their structural properties. Both crystallize in the Monoclinic system, with parameters: a = 8.1905(3), b = 30.8811(15), c = 12.8959(7) angstrom, beta = 94.465(3)degrees and Z = 4 for [Sn(L)(2)] and a = 8.5247(2), b = 21.5445(7), c = 12.3706(3) angstrom, beta = 96.932(2)degrees and Z = 4 for cis-[SnCl(2)(L)(dmso)]. In both complexes, the Sn(IV) central atom is coordinated in a distorted octahedral geometry with the thiolate ligand (L(2-)) coordinated via O, N and S atoms. The (119)Sn Mossbauer spectroscopy of the complexes were studied and the results revealed that both complexes posses isomer shift (delta) and quadrupole splitting (Delta), which are almost the same.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optical, magnetic and structural properties of Eu doped low silica calcium aluminosilicate glasses were investigated. The optical absorption coefficient presented two bands at 39 246 and 29 416 cm(-1), which were assigned respectively to the 4f(7) ((8)S(7/2)) -> 4f(6) (4F(J)) 5d (T(2g)), and 4f(7) ((8)S(7/2)) -> 4f(6) (4F(J)) 5d (E(g)) transitions of Eu(2+). The fluorescence measured at 300 K on a sample doped with 0.5 wt% of Eu(2)O(3) exhibited a broad band centered at 17 350 cm(-1), which is attributed to the 4f(6)5d -> 4f(7) transition of Eu(2+), whereas the additional peaks are due to the (5)D(0) -> (7)F(J) (J = 1, 2, 4) transitions of Eu(3+). From magnetization and XANES data it was possible to evaluate the fractions of Eu(2+) and Eu(3+) for the sample doped with 0.5 and 5.0 wt% of Eu(2)O(3), the values of which were approximately 30 and 70%, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bonding properties of cations in phosphate glasses determine many short- and medium-range structural features in the glass network, hence influencing bulk properties. In this work, Pb-Al-metaphosphate glasses (1 - x)Pb-(PO(3))(2)center dot xAI(PO(3))(3) with 0 <= - x <= 1 were analyzed to determine the effect of the substitution of Pb by Al on the glass structure in the metaphosphate composition. The glass transition temperature and density were measured as a function of the Al concentration. The vibrational and structural properties were probed by Raman spectroscopy and nuclear magnetic resonance of (31)P, (27)Al, and (207)Pb. Aluminum incorporates homogeneously in the glass creating a stiffer and less packed network. The average coordination number for Al decreases from 5.9 to 5.0 as x increases from 0.1 to 1, indicating more covalent Al-O bonds. The coordination number of Pb in these glasses is greater than 8, showing an increasing ionic behavior for compositions richer in Al. A quantitative analysis of the phosphate speciation shows definite trends in the bonding of AlO(n) groups and phosphate tetrahedra. In glasses with x < 0.48, phosphate groups share preferentially only one nonbridging O corner with an AlO(n) coordination polyhedron. For x > 0.48 more than one nonbridging O can be linked to AlO(n) polyhedra. There is no corner sharing of O between AlO(n) and PbO(n) polyhedra nor between AlO(n) themselves throughout the compositional range. The PbO(n) coordination polyhedra show considerable nonbridging O sharing, with each O participating in the coordination sphere of at least two Pb. The bonding preferences determined for Al are consistent with the behavior observed in Na-Al and Ca-Al metaphosphates, indicating this may be a general behavior for ternary phosphate glasses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Laplace distribution is one of the earliest distributions in probability theory. For the first time, based on this distribution, we propose the so-called beta Laplace distribution, which extends the Laplace distribution. Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters and derive the observed information matrix. The usefulness of the new model is illustrated by means of a real data set. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two hybrid materials based on dodecatungstophosphoric acid (HPW) dispersed in ormosils modified with 3-aminopropiltrietoxysilane (APTS) or with N-(3-(trimethoxysilyl)-propyl)-ethylene-diamine (TSPEN) show reversible photochromic response induced by irradiation in the 200-390 nm UV range. A set of solid-state nuclear magnetic resonance (NMR) techniques was used to analyze the structural properties of the main components of these hybrids (the HPW polyanion, the inorganic matrix, and the organic functionalities). For the ormosils, the use of (29)Si NMR, {(1)H}-(29)Si cross-polarization, and {(1)H}-(29)Si HETCOR revealed a homogeneous distribution of silicon species Q ``, T(2), and T(3) for the APTS hybrid, contrasting with the separation of T(3) species in the TSPEN hybrid. The combination of (31)P NMR, {(1)H}-(31)P cross-polarization and (31)P-{(1)H} spin-echo double resonance (SEDOR) revealed the dispersion of the HPW ions in the ormosil, occupying sites with a high number of close protons (>50). Differences in the molecular dynamics at room temperature, inferred from SEDOR experiments, indicate a state of restricted mobility of the HPW ion and the surrounding molecular groups in the TSPEN hybrid. This behavior is consistent with the presence of more amino groups in the TSPEN, acting as chelating groups to the HPW ion. This hybrid, with the strong chelate interaction of the diamine group, shows the most intense photochromic response, in agreement with the charge transfer models proposed to explain the photochromic effect. Electronic reflectance spectroscopy in irradiated samples revealed the presence of one-electron and two-electron reduced polyanions. The one-electron reduced species could be detected also by (31)P NMR spectroscopy immediately after UV irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.