124 resultados para Structural and surface characterization
Resumo:
Morphological and molecular analyses have proven to be complementary tools of taxonomic information for the redescription of the ctenostome bryozoans Amathia brasiliensis Busk, 1886 and Amathia distans Busk, 1886. The two species, originally described from material collected by the `Challenger` expedition but synonymized by later authors, now have their status fixed by means of the selection of lectotypes, morphological observations and analyses of DNA sequences described here. The morphological characters allowing the identification of living and/or preserved specimens are (1) A. brasiliensis: whitish-pale pigment spots in the frontal surface of stolons and zooids, and a wide stolon with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it, the spirality direction being maintained from maternal to daughter stolons; and (2) A. distans: bright yellow pigment spots in stolonal and zooidal surfaces including lophophores, and a slender stolon, thickly cuticularized, with biserial zooid clusters growing in clockwise and anti-clockwise spirals along it and the spirality direction not maintained from maternal to daughter stolons. Pairwise comparisons of DNA sequences of the mitochondrial genes cytochrome c oxidase subunit I and large ribosomal RNA subunit revealed deep genetic divergence between A. brasiliensis and A. distans. Finally, analyses of those sequences within a Bayesian phylogenetic context recovered their genealogical species status.
Resumo:
Titanium and its alloys have been used in dentistry due to their excellent corrosion resistance and biocompatibility. It was shown that even a pure titanium metal and its alloys spontaneously form a bone-like apatite layer on their surfaces within a living body. The purpose of this work was to evaluate the growth of calcium phosphates at the surface of the experimental alloy Ti-7.5Mo. We produced ingots from pure titanium and molybdenum using an arc-melting furnace We then submitted these Ingots to heat treatment at 1100 degrees C for one hour, cooled the samples in water, and cold-worked the cooled material by swaging and machining. We measured the media roughness (Ra) with a roughness meter (1.3 and 2.6 mu m) and cut discs (13 mm in diameter and 4 mm in thickness) from each sample group. The samples were treated by biomimetic methods for 7 or 14 days to form an apatite coating on the surface. We then characterized the surfaces with an optical profilometer, a scanning electron microscope and contact angle measurements. The results of this study indicate that apatite can form on the surface of a Ti-7.5Mo alloy, and that a more complete apatite layer formed on the Ra = 2 6 mu m material. This Increased apatite formation resulted in a lower contact angle (C) 2010 Elsevier B.V. All rights reserved
Resumo:
The superiority of superaustenitic stainless steel (SASS) lies in its good weldability and great resistance to stress corrosion and pitting, because of its higher chromium, molybdenum, and nitrogen contents, when compared to general stainless steels. However, some of its applications are limited by very poor wear behavior. Plasma-nitriding is a very effective treatment for producing wear resistant and hard surface layers on stainless steels without compromising the corrosion resistance. In this work, UNS S31254 SASS samples were plasma-nitrided at three different temperatures (400, 450, and 500 degrees C), under a pressure of 500 Pa, for 5 h, in order to verify the influence of the temperature on the morphology, wear, and corrosion behavior of the modified surface layers. The plasma-nitrided samples were analyzed by means of optical microscopy, micro-hardness. X-ray diffraction, wear, and corrosion tests. Wear tests were conducted in a fixed ball micro-wear machine and corrosion behavior was carried out in natural sea water by means of potentiodynamic polarization curves. For the sample which was plasma-nitrided at 400 degrees C, only the expanded austenite phase was observed, and for the treatments performed at 450 and 500 degrees C, chromium nitrides (CrN and Cr(2)N) were formed in addition to the expanded austenite. Wear volume and Knoop surface hardness increased as the plasma-nitriding temperature increased. Higher wear rates were observed at high temperatures, probably due to the increment on layer fragility. The sample modified at 400 degrees C exhibited the best corrosion behavior among all the plasma-nitriding conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present study, an acidic PLA(2), designated BI-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000 Da and pl was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9 U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-alpha, IL-1 beta and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA2 induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
An L-amino acid oxidase (Bp-LAAO) from Bothrops pauloensis snake venom was highly purified using sequential chromatography steps on CM-Sepharose, Phenyl-Sepharose CL4B, Benzamidine Sepharose and C18 reverse-phase HPLC. Purified Bp-LAAO showed to be a homodimeric acidic glycoprotein with molecular weight around 65 kDa under reducing conditions in SDS-PAGE. The best substrates for Bp-LAAO were L-Met, L-Leu, L-Phe and L-Ile and the enzyme showed a strong reduction of its catalytic activity upon L-Met and L-Phe substrates at extreme temperatures. Bp-LAAO showed leishmanicidal, antitumoral and bactericidal activities dose dependently. Bp-LAAO induced platelet aggregation in platelet-rich plasma and this activity was inhibited by catalase. Bp-LAAC-cDNA of 1548 bp codified a mature protein with 516 amino acid residues corresponding to a theoretical isoelectric point and molecular weight of 6.3 and 58 kDa, respectively. Additionally, structural and phylogenetic studies identified residues under positive selection and their probable location in Elp-LAAO and other snake venom LAAOs (svLAAOs). Structural and functional investigations of these enzymes can contribute to the advancement of toxinology and to the elaboration of novel therapeutic agents. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Phospholipases A(2) (PLA(2)s) are important components of Bothrops snake venoms, that can induce several effects on envenomations such as myotoxicity, inhibition or induction of platelet aggregation and edema. It is known that venomous and non-venomous snakes present PLA(2) inhibitory proteins (PLIs) in their blood plasma. An inhibitory protein that neutralizes the enzymatic and toxic activities of several PLA2s from Bothrops venoms was isolated from Bothrops alternatus snake plasma by affinity chromatography using the immobilized myotoxin BthTX-I on CNBr-activated Sepharose. Biochemical characterization of this inhibitory protein, denominated alpha BaltMIP, showed it to be a glycoprotein with Mr of similar to 24,000 for the monomeric subunit. CD spectra of the PLA(2)/inhibitor complexes are considerably different from those corresponding to the individual proteins and data deconvolution suggests that the complexes had a relative gain of helical structure elements in comparison to the individual protomers, which may indicate a more compact structure upon complexation. Theoretical and experimental structural studies performed in order to obtain insights into the structural features of aBaltMIP indicated that this molecule may potentially trimerize in solution, thus strengthening the hypothesis previously raised by other authors about snake PLIs oligomerization. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
A xylanase was cloned from Aspergillus niveus and successfully expressed in Aspergillus nidulans (XAN). The full-length gene consisted of 890 bp and encoded 275 mature amino acids with a calculated mass of 31.3 kDa. The deduced amino acid sequence was highly homologous with the xylanase belonging to family 11 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by anion-exchange chromatography and gel filtration. The optima of pH and temperature for the recombinant enzyme were 5.0 and 65 degrees C, respectively. The thermal stability of the recombinant xylanase was extremely improved by covalent immobilization on glyoxyl agarose with 91.4% of residual activity after 180 min at 60 degrees C, on the other hand, the free xylanase showed a half-life of 9.9 min at the same temperature. Affinity chromatography on Concanavalin A- and Jacalin-agarose columns followed by SDS-PAGE analyses showed that the XAN has O- and N-glycans. XAN promotes hydrolysis of xylan resulting in xylobiose, xylotriose and xylotetraose. Intermediate degradation of xylan resulting in xylo-oligomers is appealing for functional foods as the beneficial effect of oligosaccharides on gastrointestinal micro flora includes preventing proliferation of pathogenic intestinal bacteria and facilitates digestion and absorption of nutrients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work we report the interaction effects of the local anesthetic dibucaine (DBC) with lipid patches in model membranes by Atomic Force Microscopy (AFM). Supported lipid bilayers (egg phosphatidylcholine, EPC and dimyristoylphosphatidylcholine, DMPQ were prepared by fusion of unilamellar vesicles on mica and imaged in aqueous media. The AFM images show irregularly distributed and sized EPC patches on mica. On the other hand DMPC formation presents extensive bilayer regions on top of which multibilayer patches are formed. In the presence of DBC we observed a progressive disruption of these patches, but for DMPC bilayers this process occurred more slowly than for EPC. In both cases, phase images show the formation of small structures on the bilayer surface suggesting an effect on the elastic properties of the bilayers when DBC is present. Dynamic surface tension and dilatational surface elasticity measurements of EPC and DMPC monolayers in the presence of DBC by the pendant drop technique were also performed, in order to elucidate these results. The curve of lipid monolayer elasticity versus DBC concentration, for both EPC and DMPC cases, shows a maximum for the surface elasticity modulus at the same concentration where we observed the disruption of the bilayer by AFM. Our results suggest that changes in the local curvature of the bilayer induced by DBC could explain the anesthetic action in membranes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
A shift in the activation of pulmonary macrophages characterized by an increase of IL-1, INF-alpha and IL-6 production has been induced in mice infected with Paracoccidioides brasiliensis. It is still unclear whether a functional shift in the resident alveolar macrophage population would be responsible for these observations due to the expression of cell surface molecules. We investigated pulmonary macrophages by flow cytometry from mice treated with P. brasiliensis derivatives by intratracheal route. In vivo labeling with the dye PKH26GL was applied to characterize newly recruited pulmonary macrophages from the bloodstream. Pulmonary macrophages from mice inflamed with P. brasiliensis derivatives showed a high expression of the surface antigens CD11b/CD18 and CD23 among several cellular markers. The expression of these markers indicated a pattern of activation of a subpopulation characterized as CD11b(+) or CD23(+), which was modulated in vitro by IFN-gamma and IL-4. Analysis of monocytes labelled with PKH26GL demonstrated that CD11b(+) cells did infiltrate the lung exhibiting a proinflammatoni pattern of activation, whereas CD23(+) cells were considered to be resident in the lung. These findings may contribute to better understand the pathology of lung inflammation caused by P. brasiliensis infection. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Turkey coronavirus (TCoV) is a causative agent associated with poult enteritis and mortality syndrome (PEMS) in turkeys worldwide. The disease is an acute, highly contagious enteric disease that is characterized by depression, anorexia, diarrhea, and high mortality in commercial turkey flocks. The presence of TCoV in 12 intestinal-content samples, from turkey flocks aged between 10 and 104 days and exhibiting severe enteritis, was monitored during the period of 2004 to 2006. TCoV detection was accomplished by a reverse transcriptase-polymerase chain reaction (RT-PCR) through amplification of the 3` UTR region, followed by amplification of genes 3 and 5. Molecular characterization of the viruses was done through amplification of genes 3 and 5 and showed evidence of genetic similarity between them, although they differed from sequences of other TCoVs described in the literature. In relation to gene 3, samples showed a greater relationship with chicken infectious bronchitis virus (IBV), while gene 5 showed greater identity with pheasant coronavirus (PhCoV). Our results suggest that the strategy of amplification of the 3` UTR region, followed by sequencing of genes 3 and 5, has proven to be an effective means of detecting TCoV in intestinal contents.
Resumo:
Cytogenetic analyses were carried out in five species of Pimelodella from the main sub-basins of Upper Parana River and Paraiba do Sul River. The diploid number ranged from 2n = 46 to 2n = 58 chromosomes, and all populations differed in the karyotype constitution. The presence of supernumerary chromosomes as well as the occurrence of a XX/XY sex chromosome system and heterochromatin polymorphisms were detected. The 18S rDNA FISH confirmed the presence of single NORs and revealed additional sites on supernumerary chromosomes. The number and location of 5S rDNA sites were variable. Aspects related to the karyotypic evolution within the genus are discussed.
Resumo:
CdS is one of the most important II-VI semiconductors, with applications in solar cells, optoelectronics and electronic devices. CdS nanoparticles were synthesized via microwave-assisted solvothermal technique. Structural and morphological characterization revealed the presence of crystalline structures presenting single phase with different morphologies such as ""nanoflowers"" and nanoplates depending on the solvent used. Optical characterization was made by diffuse reflectance and photoluminescence spectroscopy, revealing the influence of the different solvents on the optical properties due to structural defects generated during synthesis. It is proposed that these defects are related to sulfur vacancies, with higher concentration of defects for the sample synthesized in ethylene glycol in comparison with the one synthesized in ethylene diamine. (C) 2011 Elsevier B.V. All rights reserved.