26 resultados para Statistical Convergence
Resumo:
This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.
Resumo:
This paper analyzes the convergence of the constant modulus algorithm (CMA) in a decision feedback equalizer using only a feedback filter. Several works had already observed that the CMA presented a better performance than decision directed algorithm in the adaptation of the decision feedback equalizer, but theoretical analysis always showed to be difficult specially due to the analytical difficulties presented by the constant modulus criterion. In this paper, we surmount such obstacle by using a recent result concerning the CM analysis, first obtained in a linear finite impulse response context with the objective of comparing its solutions to the ones obtained through the Wiener criterion. The theoretical analysis presented here confirms the robustness of the CMA when applied to the adaptation of the decision feedback equalizer and also defines a class of channels for which the algorithm will suffer from ill-convergence when initialized at the origin.
Resumo:
Although the formulation of the nonlinear theory of H(infinity) control has been well developed, solving the Hamilton-Jacobi-Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H(infinity) control via output feedback are presented. An example is presented illustrating the application of the algorithm.
Resumo:
The aim objective of this project was to evaluate the protein extraction of soybean flour in dairy whey, by the multivariate statistical method with 2(3) experiments. Influence of three variables were considered: temperature, pH and percentage of sodium chloride against the process specific variable ( percentage of protein extraction). It was observed that, during the protein extraction against time and temperature, the treatments at 80 degrees C for 2h presented great values of total protein (5.99%). The increasing for the percentage of protein extraction was major according to the heating time. Therefore, the maximum point from the function that represents the protein extraction was analysed by factorial experiment 2(3). By the results, it was noted that all the variables were important to extraction. After the statistical analyses, was observed that the parameters as pH, temperature, and percentage of sodium chloride, did not sufficient for the extraction process, since did not possible to obtain the inflection point from mathematical function, however, by the other hand, the mathematical model was significant, as well as, predictive.
Resumo:
We define a new type of self-similarity for one-parameter families of stochastic processes, which applies to certain important families of processes that are not self-similar in the conventional sense. This includes Hougaard Levy processes such as the Poisson processes, Brownian motions with drift and the inverse Gaussian processes, and some new fractional Hougaard motions defined as moving averages of Hougaard Levy process. Such families have many properties in common with ordinary self-similar processes, including the form of their covariance functions, and the fact that they appear as limits in a Lamperti-type limit theorem for families of stochastic processes.
Resumo:
This article considers alternative methods to calculate the fair premium rate of crop insurance contracts based on county yields. The premium rate was calculated using parametric and nonparametric approaches to estimate the conditional agricultural yield density. These methods were applied to a data set of county yield provided by the Statistical and Geography Brazilian Institute (IBGE), for the period of 1990 through 2002, for soybean, corn and wheat, in the State of Paran. In this article, we propose methodological alternatives to pricing crop insurance contracts resulting in more accurate premium rates in a situation of limited data.
Resumo:
Hydrodynamic studies were conducted in a semi-cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60 degrees and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/U-ms from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst`s Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.
Resumo:
The increase of the women purchase power has led some companies to adopt strategies of products differentiation as well as to produce specific products to the female public. The auto industry is not immune to this phenomenon, once the women represent, approximately half of the automobile sales in the country. Considering the consumption and the behavior differences between women and men, it has set the following question: are there differences between the choices associated to the automobile by men and the choices associated to the automobile by women? It has been presented to the participants items found in the people`s day-by-day, which are valorized by them, and the participants have been asked to choose and associate these items to the automobile. The results analysis revealed there are more similarities than differences between choices associated to the automobile by men ad choices associated to the automobile by women. The similarity between the choices suggests that the representations, the meanings and values assigned. to the car by men ana women are similar and thus the strategy of product differentiation does not apply to the automotive industry
Resumo:
The objective of this study was to show the association patterns among seven types of dental anomalies (second pre-molar agenesis, upper side incisive reduced in size, lower first molar infra-ochlesis, enamel hypoplasia, first molar ectopic eruption, supra numerous teeth and upper canine ectopic eruption) in a population sample without dental treatment ranging in age from 7 to 14. A total of 172 patients were attended and underwent the clinical examination at the Clinica Infantil da Fundacao Educacional de Barretos. Eleven patients from this total were selected according to a first dental anomaly diagnosis and submitted to panoramic radiography. A significant association (p < 0.05) was detected among six pairs of anomalies (second pre-molar agenesis x first pre-molar ectopic eruption; second pre-molar agenesis x lower first molar infra-ochlesis; second pre-molar agenesis x upper side incisive reduced in size; supra numerous teeth x reduced size upper side incisive; first pre-molar ectopic eruption x enamel hypoplasia; lower first molar infra-ochlesis x upper side incisive reduced in size) suggesting a common genetic origin for these conditions. The association was not significant in only one case where there was anomaly sharing by the patients. The existence of an anomaly is clinically relevant for early diagnosis of a possible association and an anomaly can indicate an increased risk of other anomalies.
Resumo:
Depression is the most frequent psychiatric disorder in Parkinson`s disease (PD). Although evidence Suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontall cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.