99 resultados para Spectral analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to examine the effects of low carbohydrate (CHO) availability on heart rate variability (HRV) responses during moderate and severe exercise intensities until exhaustion. Six healthy males (age, 26.5 +/- 6.7 years; body mass, 78.4 +/- 7.7 kg; body fat %, 11.3 +/- 4.5%; (V) over dotO(2max), 39.5 +/- 6.6 mL kg(-1) min(-1)) volunteered for this study. All tests were performed in the morning, after 8-12 h overnight fasting, at a moderate intensity corresponding to 50% of the difference between the first (LT(1)) and second (LT(2)) lactate breakpoints and at a severe intensity corresponding to 25% of the difference between the maximal power output and LT(2). Forty-eight hours before each experimental session, the subjects performed a 90-min cycling exercise followed by 5-min rest periods and subsequent 1-min cycling bouts at 125% (V) over dotO(2max) (with 1-min rest periods) until exhaustion, in order to deplete muscle glycogen. A diet providing 10% (CHO(low)) or 65% (CHO(control)) of energy as carbohydrates was consumed for the following 2 days until the experimental test. The Poicare plots (standard deviations 1 and 2: SD1 and SD2, respectively) and spectral autoregressive model (low frequency LF, and high frequency HF) were applied to obtain HRV parameters. The CHO availability had no effect on the HRV parameters or ventilation during moderate-intensity exercise. However, the SD1 and SD2 parameters were significantly higher in CHO(low) than in CHO(control), as taken at exhaustion during the severe-intensity exercise (P < 0.05). The HF and LF frequencies (ms(2)) were also significantly higher in CHO(low) than in CHO(control) (P < 0.05). In addition, ventilation measured at the 5 and 10-min was higher in CHO(low) (62.5 +/- 4.4 and 74.8 +/- 6.5 L min(-1), respectively, P < 0.05) than in CHO(control) (70.0 +/- 3.6 and 79.6 +/- 5.1 L min(-1), respectively; P < 0.05) during the severe-intensity exercise. These results suggest that the CHO availability alters the HRV parameters during severe-, but not moderate-, intensity exercise, and this was associated with an increase in ventilation volume.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A prenylated benzophenone, hyperibone A, was isolated from the hexane fraction of Brazilian propolis type 6. Its structure was determined by spectral analysis including 2D NMR. This compound exhibited cytotoxic activity against HeLa tumor cells (IC(50) = 0.1756 mu M), strong antimicrobial activity (MIC range-0.73-6.6 mu g/mL; MBC range-2.92-106 mu g/mL) against Streptococcus mutans, Streptococcus sobrinus, Streptococcus oralis, Staphylococcus aureus, and Actinomyces naeslundii, and the results of its cytotoxic and antimicrobial activities were considered good. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n = 50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17 +/- 13.46 cm/s and 0.38 +/- 0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15 +/- 0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17 +/- 9.40 cm/s and 0.54 +/- 0.07. The RA had a mean ESA of 1.12 +/- 1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828 +/- 0.296. The IA showed PSV and RI values of 32.16 +/- 9.33 cm/s and 0.52 +/- 0.06, respectively. The mean ESA of all IAs was 0.73 +/- 0.61 m/s(2). The calculated upper limit of the reference value was 2.0 m/s(2). The mean renal-interlobar artery ratio was 1.45 +/- 0.57. The RI values obtained in this study were similar to values reported in the literature. Some conditions that lead to a decrease in compliance and to an increase in vascular resistance can affect the Doppler spectral waveforms without changes in RI. To our knowledge, there are no studies that were directed toward to the normal ESA values of the renal vasculature in Persian cats. This study introduced a new ratio between the PSV of the RA and the IA. This index was developed based on the well-known effects of Doppler on the detection of stenosis, regardless of the cause. Further studies are necessary to verify the hemodynamic behavior of this index under pathological conditions in cats as well as the effect of aging, nephropathies and systemic pressure on Doppler velocimetric parameters. (C) 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to known heliangolides, a new eudesmanolide was isolated from the leaf rinse extract of Viguiera robusta (Asteraceae). Structural elucidation was based oil spectral analysis. It is the first report on eudesmanolides in members of the subgenus Calanticaria of Viguiera. In this work, the main isolated compound, the furanoheliangolide budlein A, besides its previously, reported in vitro and in vivo anti-inflammatory activities, inhibited human neutrophil elastase release. The inhibition was at the concentration of (16.83 +/- 1.96) mu M for formylated bacterial tripeptide (fMLP) stimulation and (11.84 +/- 1.62) mu M for platelet aggregation factor (PAF) stimulation, being slightly less active than the reference drug parthenolide. The results are important to demonstrate the potential anti-inflammatory activities of sesquiterpene lactones and corroborate the previous studies using other targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate whether arterial baroreceptors mediate the training-induced blood pressure fall and resting bradycardia in hypertensive (SHR) and normotensive rats (WKY). Male SHR and WKY rats, submitted to sino-aortic denervation (SAD) or sham surgery (SHAM group), were allocated to training (T; 55% of maximal exercise capacity) or sedentary (S) protocols for 3 months. Rats were instrumented with arterial and venous catheters for haemodynamic measurements at rest (power spectral analysis) and baroreceptor testing. Kidney and skeletal muscles were processed for morphometric analysis of arterioles. Elevated mean arterial pressure (MAP) and heart rate (HR) in SHAM SHRS were accompanied by increased sympathetic variability and arteriolar wall/lumen ratio [+3.4-fold on low-frequency (LF) power and +70%, respectively, versus WKYS, P < 0.05]. Training caused significant HR (similar to 9% in WKY and SHR) and MAP reductions (-8% in the SHR), simultaneously with improvement of baroreceptor reflex control of HR (SHR and WKY), LF reduction (with a positive correlation between LF power and MAP levels in the SHR) and normalization of wall/lumen ratio of the skeletal muscle arterioles (SHR only). In contrast, SAD increased pressure variability in both strains of rats, causing reductions in MAP (-13%) and arteriolar wall/lumen ratio (-35%) only in the SHRS. Training effects were completely blocked by SAD in both strains; in addition, after SAD the resting MAP and HR and the wall/lumen ratio of skeletal muscle arterioles were higher in SHRT versus SHRS and similar to those of SHAM SHRS. The lack of training-induced effects in the chronic absence of baroreceptor inputs strongly suggests that baroreceptor signalling plays a decisive role in driving beneficial training-induced cardiovascular adjustments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regarding all benefits of exercise training, a question remains: how long are these benefits kept? This study evaluated the effect of 3-week detraining after 10 weeks of training in STZ-diabetic rats. Male Wistar rats were assigned into: sedentary controls, trained controls, trained-detrained controls. sedentary diabetic, trained diabetic and trained-detrained diabetic. Arterial pressure (AP) and heart rate (HR) were recorded by a data acquisition system. Baroreflex sensitivity (BRS) was evaluated by HR responses to AP changes induced by infusion of vasoactive drugs. Intrinsic heart rate (IHR), sympathetic tonus (ST) and vagal tonus (VT) were evaluated by pharmacological blockade with atenolol and atropine. Spectral analysis of systolic AP and HR variabilities (HRV) was performed to estimate autonomic modulation to the heart and vessels. Diabetes cardiovascular and autonomic dysfunctions were reversed by exercise training and partially maintained in the 3-week detraining period. In controls, training decreased AP and HR and improved BRS. changes that returned to baseline values after detraining. IHR and VT were improved in trained diabetic rats and remained in detrained diabetic ones. LF component of HRV decreased in trained control group. In diabetics. exercise training improved variance, and absolute LF and HF components of HRV. Only HF was maintained in detrained diabetic group. Moreover, there was an inverse relationship between plasma glucose and the absolute HF component of HRV. These changes probably determined the different survival rate of 80% in diabetic detrained and 51% in diabetic sedentary rats. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives The present study investigates the hemodynamic and autonomic regulation during sleep-awake transitions and across different sleep cycles in patients with essential hypertension. Methods Nineteen individuals free of sleep apnea (10 normotensive and nine hypertensive matched for age, sex, and body mass index) underwent a standard polysomnography, with simultaneous electrocardiography and beat-to-beat blood pressure monitoring (Portapres). All measurements were determined while awake (before and after sleep), as well as in the beginning and at end of the sleep cycle (first/last cycle of nonrapid and rapid eye movement stages). Results Systolic blood pressure was higher in hypertensives and exhibited a similar reduction to the normotensives ones in initial nonrapid eye movement sleep. This reduction was because of different mechanisms: a significant fall in cardiac output in normotensives, whereas in hypertensives was also dependent of a decrease in peripheral vascular resistance. Hypertensive patients presented lower heart rate variation and attenuated baroreflex sensitivity during sleep but not immediately before and after sleep. Spectral analysis suggested a higher sympathetic activity in the sleep stages in hypertension. Additionally, a progressive sympathetic predominance (final rapid eye movement> initial rapid eye movement and awake period postsleep> awake period presleep) was observed in both groups. Conclusion Hypertension is associated with depressed baroreflex sensitivity and increased sympathetic activation during sleep. The greater sympathetic predominance at the end of night (preceding the morning surge of sympathetic activity) could be implicated in the occurrence of cardiovascular events. J Hypertens 27: 1655-1663 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study has investigated in conscious rats the influence of the duration of physical training sessions on cardiac autonomic adaptations by using different approaches; 1) double blockade with methylatropine and propranolol; 2) the baroreflex sensitivity evaluated by alternating bolus injections of phenylephrine and sodium nitroprusside; and 3) the autonomic modulation of HRV in the frequency domain by means of spectral analysis. The animals were divided into four groups: one sedentary group and three training groups submitted to physical exercise (swimming) for 15, 30, and 60 min a day during 10 weeks. All training groups showed similar reduction in intrinsic heart rate (IHR) after double blockade with methylatropine and propranolol. However, only 30-min and 60-min physical training presented an increase in the vagal autonomic component for determination of basal heart rate (HR) in relation to group sedentary. Spectral analysis of HR showed that the 30-min and 60-min physical training presented the reduction in low-frequency oscillations (LF = 0.20-0.75 Hz) and the increase in high-frequency oscillations (HF = 0.75-2.5 Hz) in normalized units. These both groups only showed an increased baroreflex sensitivity to tachycardiac responses in relation to group sedentary, however when compared, the physical training of 30-min exhibited a greater gain. In conclusion, cardiac autonomic adaptations, characterised by the increased predominance of the vagal autonomic component, were not proportional to the duration of daily physical training sessions. In fact, 30-minute training sessions provided similar cardiac autonomic adaptations, or even more enhanced ones, as in the case of baroreflex sensitivity compared to 60-minute training sessions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigated morpho-functional relations of the aortic depressor nerve (ADN) 5, 15 and 120 days after the onset of streptozotocin-induced diabetes in rats. Time control animals received vehicle. Under pentobarbital anesthesia, ADN activity was recorded simultaneously with arterial pressure. After the recordings, nerves were prepared for light microscopy study and morphometry. ADN function was accessed by means of pressure-nerve activity curve (fitted by sigmoidal regression) and cross-spectral analysis between mean arterial pressure (MAP) and ADN activity. The relation between morphological (myelinated fibers number and density, total myelin area, total fiber area and percentage of occupancy) and functional (gain, signal/noise relation, frequency) parameters were accessed by linear regression analysis and correlation coefficient calculations. Functional parameters obtained by means of the sigmoidal regression curve as well as by cross-spectral analysis were similar in diabetic and control rats. Morphometric parameters of the ADN were similar between groups 5 days after the onset of diabetes. Average myelin area and myelinated fiber area were significantly smaller on diabetic rats 15 and 120 days after the onset of diabetes, being the myelinated fiber and respective axons area and diameter also smaller on 120 days group. Nevertheless, G ratio (ratio between axon and fiber diameter) was nearly 0.6 and not different between groups or experimental times. No significant relationship between morphological and functional parameters was detected in all experimental groups. The present study suggests that ADN diabetic neuropathy was time-dependent, with damage to myelinated fibers to be the primary event, not evidenced by physiological methods. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, we evaluated the mechanisms underpinning the hypertension observed in freely moving juvenile rats submitted to chronic intermittent hypoxia (CIH). Male juvenile Wistar rats (20-21 days old) were submitted to CIH (6% O(2) for 40 s every 9 min, 8 h day(-1)) for 10 days while control rats were maintained in normoxia. Prior to CIH, baseline systolic arterial pressure (SAP), measured indirectly, was similar between groups (86 +/- 1 versus 87 +/- 1 mmHg). After exposure to CIH, SAP recorded directly was higher in the CIH (n = 28) than in the control group (n = 29; 131 +/- 3 versus 115 +/- 2 mmHg, P < 0.05). This higher SAP of CIH rats presented an augmented power of oscillatory components at low (10.05 +/- 0.91 versus 5.02 +/- 0.63 mmHg(2), P < 0.05) and high (respiratory-related) frequencies (12.42 +/- 2.46 versus 3.28 +/- 0.61 mmHg(2), P < 0.05) in comparison with control animals. In addition, rats exposed to CIH also exhibited an increased cardiac baroreflex gain (-3.11 +/- 0.08 versus -2.1 +/- 0.10 beats min(-1) mmHg(-1), P < 0.0001), associated with a shift to the right of the operating point, in comparison with control rats. Administration of hexamethonium (ganglionic blocker, i.v.), injected after losartan (angiotensin II type 1 receptor antagonist) and [beta-mercapto-beta,beta-cyclopenta-methylenepropionyl(1), O-Me-Tyr(2), Arg(8)]-vasopressin (vasopressin type 1a receptor antagonist), produced a larger depressor response in the CIH (n = 8) than in the control group (n = 9; -49 +/- 2 versus -39 +/- 2 mmHg, P < 0.05). Fifteen days after the cessation of exposure to CIH, the mean arterial pressure of CIH rats returned to normal levels. The data indicate that the sympathetic-mediated hypertension observed in conscious juvenile rats exposed to CIH is not secondary to a reduction in cardiac baroreflex gain and exhibits a higher respiratory modulation, indicating that an enhanced respiratory-sympathetic coupling seems to be the major factor contributing to hypertension in rats exposed to CIH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The present study has investigated the effect of blockade of nitric oxide synthesis on cardiovascular autonomic adaptations induced by aerobic physical training using different approaches: 1) double blockade with methylatropine and propranolol; 2) systolic arterial pressure (SAP) and heart rate variability (HRV) by means of spectral analysis; and 3) baroreflex sensitivity. Methods: Male Wistar rats were divided into four groups: sedentary rats (SR); sedentary rats treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) for one week (SRL); rats trained for eight weeks (TR); and rats trained for eight weeks and treated with L-NAME in the last week (TRL). Results: Hypertension and tachycardia were observed in SRL group. Previous physical training attenuated the hypertension in L-NAME-treated rats. Bradycardia was seen in TR and TRL groups, although such a condition was more prominent in the latter. All trained rats had lower intrinsic heart rates. Pharmacological evaluation of cardiac autonomic tonus showed sympathetic predominance in SRL group, differently than other groups. Spectral analysis of HRV showed smaller low frequency oscillations (LF: 0.2-0.75 Hz) in SRL group compared to other groups. Rats treated with L-NAME presented greater LF oscillations in the SAP compared to non-treated rats, but oscillations were found to be smaller in TRL group. Nitric oxide synthesis inhibition with L-NAME reduced the baroreflex sensitivity in sedentary and trained animals. Conclusion: Our results showed that nitric oxide synthesis blockade impaired the cardiovascular autonomic adaptations induced by previous aerobic physical training in rats that might be, at least in part, ascribed to a decreased baroreflex sensitivity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have compared the effects of two types of physical training on the cardiac autonomic control in ovariectomized and sham-operated rats according to different approaches: double autonomic blockade (DAB) with methylatropine and propranolol; baroreflex sensibility (BRS) and spectral analysis of heart rate variability (HRV). Wistar female rats (+/- 250 g) were divided into two groups: sham-operated and ovariectomized. Each group was subdivided into three subgroups: sedentary rats, rats submitted to aerobic trained and rats submitted to resistance training. Ovariectomy did not change arterial pressure, basal heart rate (HR), DAB and BRS responses, but interfered with HRV by reducing the low-frequency oscillations (LF = 0.20-0.75 Hz) in relation to sedentary sham-operated rats. The DAB showed that both types of training promoted an increase in the predominance of vagal tonus in sham-operated rats, but HR variations due to methylatropine were decreased in the resistance trained rats compared to sedentary rats. Evaluation of BRS showed that resistance training for sham-operated and ovariectomized rats reduced the tachycardic responses in relation to aerobic training. Evaluation of HRV in trained rats showed that aerobic training reduced LF oscillations in sham-operated rats, whereas resistance training had a contrary effect. In the ovariectomized rats, aerobic training increased high frequency oscillations (HF = 0.75-2.5 Hz), whereas resistance training produced no effect. In sham-operated rats, both types of training increased the vagal autonomic tonus, but resistance training reduced HF oscillations and BRS as well. In turn, both types of training had similar results in ovariectomized rats, except for HRV, as aerobic training promoted an increase in HF oscillations. (C) 2011 Elsevier B.V. All rights reserved.