26 resultados para Research data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermodynamic properties of bread dough (fusion enthalpy, apparent specific heat, initial freezing point and unfreezable water) were measured at temperatures from -40 degrees C to 35 degrees C using differential scanning calorimetry. The initial freezing point was also calculated based on the water activity of dough. The apparent specific heat varied as a function of temperature: specific heat in the freezing region varied from (1.7-23.1) J g(-1) degrees C(-1), and was constant at temperatures above freezing (2.7 J g(-1) degrees C(-1)). Unfreezable water content varied from (0.174-0.182) g/g of total product. Values of heat capacity as a function of temperature were correlated using thermodynamic models. A modification for low-moisture foodstuffs (such as bread dough) was successfully applied to the experimental data. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimation of Taylor`s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grass reference evapotranspiration (ETo) is an important agrometeorological parameter for climatological and hydrological studies, as well as for irrigation planning and management. There are several methods to estimate ETo, but their performance in different environments is diverse, since all of them have some empirical background. The FAO Penman-Monteith (FAD PM) method has been considered as a universal standard to estimate ETo for more than a decade. This method considers many parameters related to the evapotranspiration process: net radiation (Rn), air temperature (7), vapor pressure deficit (Delta e), and wind speed (U); and has presented very good results when compared to data from lysimeters Populated with short grass or alfalfa. In some conditions, the use of the FAO PM method is restricted by the lack of input variables. In these cases, when data are missing, the option is to calculate ETo by the FAD PM method using estimated input variables, as recommended by FAD Irrigation and Drainage Paper 56. Based on that, the objective of this study was to evaluate the performance of the FAO PM method to estimate ETo when Rn, Delta e, and U data are missing, in Southern Ontario, Canada. Other alternative methods were also tested for the region: Priestley-Taylor, Hargreaves, and Thornthwaite. Data from 12 locations across Southern Ontario, Canada, were used to compare ETo estimated by the FAD PM method with a complete data set and with missing data. The alternative ETo equations were also tested and calibrated for each location. When relative humidity (RH) and U data were missing, the FAD PM method was still a very good option for estimating ETo for Southern Ontario, with RMSE smaller than 0.53 mm day(-1). For these cases, U data were replaced by the normal values for the region and Delta e was estimated from temperature data. The Priestley-Taylor method was also a good option for estimating ETo when U and Delta e data were missing, mainly when calibrated locally (RMSE = 0.40 mm day(-1)). When Rn was missing, the FAD PM method was not good enough for estimating ETo, with RMSE increasing to 0.79 mm day(-1). When only T data were available, adjusted Hargreaves and modified Thornthwaite methods were better options to estimate ETo than the FAO) PM method, since RMSEs from these methods, respectively 0.79 and 0.83 mm day(-1), were significantly smaller than that obtained by FAO PM (RMSE = 1.12 mm day(-1). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycosis fungoides (MF) and Sezary syndrome (SS), the major forms of cutaneous T-cell lymphoma, have unique characteristics that distinguish them from other types of non-Hodgkin`s lymphomas. Clinical trials in MF/SS have suffered from a lack of standardization in evaluation, staging, assessment, end points, and response criteria. Recently defined criteria for the diagnosis of early MF, guidelines for initial evaluation, and revised staging and classification criteria for MF and SS now offer the potential for uniform staging of patients enrolled in clinical trials for MF/SS. This article presents consensus recommendations for the general conduct of clinical trials of patients with MF/SS as well as methods for standardized assessment of potential disease manifestations in skin, lymph nodes, blood, and visceral organs, and definition of end points and response criteria. These guidelines should facilitate collaboration among investigators and collation of data from sponsor-generated or investigator-initiated clinical trials involving patients with MF or SS. J Clin Oncol 29:2598-2607. (C) 2011 by American Society of Clinical Oncology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer/testis Antigens (CTAs) are immunogenic proteins with a restricted expression pattern in normal tissues and aberrant expression in different types of tumors being considered promising candidates for immunotherapy. We used the alignment between EST sequences and the human genome sequence to identify novel CT genes. By examining the EST tissue composition of known CT clusters we defined parameters for the selection of 1184 EST clusters corresponding to putative CT genes. The expression pattern of 70 CT gene candidates was evaluated by RT-PCR in 21 normal tissues, 17 tumor cell lines and 160 primary tumors. We were able to identify 4 CT genes expressed in different types of tumors. The presence of antibodies against the protein encoded by 1 of these 4 CT genes (FAM46D) was exclusively detected in plasma samples from cancer patients. Due to its restricted expression pattern and immunogenicity FAM46D represents a novel target for cancer immunotherapy. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design: Data mining of single nucleotide polymorphisms (SNPs) in gene pathways related to spinal cord injury (SCI). Objectives: To identify gene polymorphisms putatively implicated with neuronal damage evolution pathways, potentially useful to SCI study. Setting: Departments of Psychiatry and Orthopedics, Faculdade de Medicina, Universidade de Sao Paulo, Brazil. Methods: Genes involved with processes related to SCI, such as apoptosis, inflammatory response, axonogenesis, peripheral nervous system development and axon ensheathment, were determined by evaluating the `Biological Process` annotation of Gene Ontology (GO). Each gene of these pathways was mapped using MapViewer, and gene coordinates were used to identify their polymorphisms in the SNP database. As a proof of concept, the frequency of subset of SNPs, located in four genes (ALOX12, APOE, BDNF and NINJ1) was evaluated in the DNA of a group of 28 SCI patients and 38 individuals with no SC lesions. Results: We could identify a total of 95 276 SNPs in a set of 588 genes associated with the selected GO terms, including 3912 nucleotide alterations located in coding regions of genes. The five non-synonymous SNPs genotyped in our small group of patients, showed a significant frequency, reinforcing their potential use for the investigation of SCI evolution. Conclusion: Despite the importance of SNPs in many aspects of gene expression and protein activity, these gene alterations have not been explored in SCI research. Here we describe a set of potentially useful SNPs, some of which could underlie the genetic mechanisms involved in the post trauma spinal cord damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>The determination of normal parameters is an important procedure in the evaluation of the stomatognathic system. We used the surface electromyography standardization protocol described by Ferrario et al. (J Oral Rehabil. 2000;27:33-40, 2006;33:341) to determine reference values of the electromyographic standardized indices for the assessment of muscular symmetry (left and right side, percentage overlapping coefficient, POC), potential lateral displacing components (unbalanced contractile activities of contralateral masseter and temporalis muscles, TC), relative activity (most prevalent pair of masticatory muscles, ATTIV) and total activity (integrated areas of the electromyographic potentials over time, IMPACT) in healthy Brazilian young adults, and the relevant data reproducibility. Electromyography of the right and left masseter and temporalis muscles was performed during maximum teeth clenching in 20 healthy subjects (10 women and 10 men, mean age 23 years, s.d. 3), free from periodontal problems, temporomandibular disorders, oro-facial myofunctional disorder, and with full permanent dentition (28 teeth at least). Data reproducibility was computed for 75% of the sample. The values obtained were POC Temporal (88 center dot 11 +/- 1 center dot 45%), POC masseter (87 center dot 11 +/- 1 center dot 60%), TC (8 center dot 79 +/- 1 center dot 20%), ATTIV (-0 center dot 33 +/- 9 center dot 65%) and IMPACT (110 center dot 40 +/- 23 center dot 69 mu V/mu V center dot s %). There were no statistical differences between test and retest values (P > 0 center dot 05). The Technical Errors of Measurement (TEM) for 50% of subjects assessed during the same session were 1 center dot 5, 1 center dot 39, 1 center dot 06, 3 center dot 83 and 10 center dot 04. For 25% of the subjects assessed after a 6-month interval, the TEM were 0 center dot 80, 1 center dot 03, 0 center dot 73, 12 center dot 70 and 19 center dot 10. For all indices, there was good reproducibility. These electromyographic indices could be used in the assessment of patients with stomatognathic dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature shows contradictory results regarding the role of composite shrinkage and elastic modulus as determinants of polymerization stress. The present study aimed at a better understanding of the test mechanics that could explain such divergences among studies. The hypothesis was that the effects of composite shrinkage and elastic modulus on stress depend upon the compliance of the testing system. A commonly used test apparatus was simulated by finite element analysis, with different compliance levels defined by the bonding substrate (steel, glass, composite, or acrylic). Composites with moduli between 1 and 12 GPa and shrinkage values between 0.5% and 6% were modeled. Shrinkage was simulated by thermal analogy. The hypothesis was confirmed. When shrinkage and modulus increased simultaneously, stress increased regardless of the substrate. However, if shrinkage and modulus were inversely related, their magnitudes and interaction with rod material determined the stress response.