171 resultados para Postoperative Phase
Resumo:
Vandetanib (ZACTIMA(TM)) is a once-daily oral anticancer drug that selectively inhibits vascular endothelial growth factor receptor, epidermal growth factor receptor, and rearranged during transfection signaling. This randomized (1: 1), double-blind study evaluated vandetanib (100mg/day) or placebo in combination with docetaxel (D; 75mg/m(2) every 3 weeks) and prednisolone (P; 2 x 5 mg/day) in 86 patients with metastatic hormone-refractory prostate cancer (mHRPC). The primary assessment was prostate-specific antigen (PSA) response (confirmed reduction of >= 50% from baseline) and a greater number of patients showed a PSA response with placebo + DP (67%) versus vandetanib + DP (40%); hazard ratio = 2.23 (one-sided 80% confidence limit = 2.90; one-sided p = 0.99). More patients experienced progression events (disease progression or death from any cause) with vandetanib + DP (65%) versus placebo + DP (60%); hazard ratio = 1.13 (one-sided 80% confidence limit = 1.44; one-sided p = 0.67). The overall incidence of adverse events was similar in both groups, although more patients experienced adverse events, leading to permanent discontinuation with vandetanib + DP (28%) versus placebo + DP (12%). However, the safety and tolerability profile for vandetanib was similar to that previously reported; adverse events that occurred more frequently in the vandetanib + DP arm were hypertension (14% vs. 2%), erythematous rash (14% vs. 2%), and exfoliative rash (12% vs. 2%). In this study of patients with mHRPC, vandetanib + DP did not demonstrate any efficacy benefit, compared with placebo + DP.
Resumo:
Background and Purpose: Radiofrequency (RF) ablation of renal tumors is a major technique for tumor cell destruction while preserving healthy renal parenchyma. There is no consensus in the literature regarding the optimal temperature, impedance, and time for RF application for effective cell destruction. This study investigated two variables while keeping time unchanged: Temperature for RF cell destruction and tissue impedance in dog kidneys. Materials and Methods: Sixteen dogs had renal punctures through videolaparoscopy for RF interstitial tissue ablation. A RF generator was applied for 10 minutes to the dog's kidney at different target temperatures: 80 degrees C, 90 degrees C, and 100 degrees C. On postoperative day14, the animals were sacrificed and nephrectomized. All lesions were macroscopically and microscopically examined. The bioelectrical impedance was evaluated at three different temperatures. Results: Renal injuries were wider and deeper at 90 degrees C (P < 0.001), and they were similar at 80 degrees C and 100 degrees C. The bioelectrical impedance was lower at 90 degrees C than at the temperatures of 80 degrees C and 100 degrees C (P < 0.001). Viable cells in the RF ablation tissue area were not found in the microscopic examination. Conclusion: The most effective cell destruction in terms of width and depth was achieved at 90 degrees C, which was also the optimal temperature for tissue impedance. RF ablation of renal cells eliminated all viable cells.
Resumo:
Background: Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of alpha v beta 3-integrin and low levels of RHOC. Methods: Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. Results: We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. Conclusion: This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a great potential of involvement in tumor progression for several of the genes identified here. A few sequences obtained here may also contribute to extend annotated mRNAs or to the identification of novel transcripts.
Resumo:
Background: Little is known with respect to the metabolic response and the requirements of infected newborns. Moreover, the nutritional needs and particularly the energy metabolism of newborns with sepsis are controversial matter. In this investigation we aimed to evaluate the rest energy expenditure (REE) of newborns with bacterial sepsis during the acute and the recovery phases. Methods: We studied nineteen neonates (27.3 +/- 17.2 days old) with bacterial sepsis during the acute phase and recovery of their illness. REE was determined by indirect calorimetry and VO(2) and VCO(2) measured by gas chromatography. Results: REE significantly increased from 49.4 +/- 13.1 kcal/kg/day during the acute to 68.3 +/- 10.9 kcal/kg/day during recovery phase of sepsis (P < 0.01). Similarly, VO(2) (7.4 +/- 1.9 vs 10 +/- 1.5 ml/kg/min) and VCO(2) (5.1 +/- 1.7 vs 7.4 +/- 1.5 ml/kg/min) were also increased during the course of the disease (P < 0.01). Conclusion: REE was increased during recovery compared to the sepsis phase. REE of septic newborns should be calculated on individualized basis, bearing in mind their metabolic capabilities.
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
It is well known that resonance can be induced by external noise or diversity. Here we show that resonance can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity. We also uncover that the presence of phase disorder can induce a double resonance phenomenon: phase disorder and coupling strength both can enhance neuronal firing activity. A physical theory is formulated to help understand the mechanism behind this double resonance phenomenon.
Resumo:
X-ray multiple diffraction experiments with synchrotron radiation were carried out on pure and doped nonlinear optical crystals: NH(4)H(2)PO(4) and KH(2)PO(4) doped with Ni and Mn, respectively. Variations in the intensity profiles were observed from pure to doped samples, and these variations correlated with shifts in the structure factor phases, also known as triplet phases. This result demonstrates the potential of X-ray phase measurements to study doping in this type of single crystal. Different methodologies for probing structural changes were developed. Dynamical diffraction simulations and curve fitting procedures were also necessary for accurate phase determination. Structural changes causing the observed phase shifts are discussed.
Resumo:
Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results.
Resumo:
We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types-each one associated, respectively, with the polar-headgroup and the acyl-chain states-which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.
Resumo:
We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to mimic the phase diagram of a mixture of rodlike and disklike molecules. A quenched distribution of shapes leads to a phase diagram with two uniaxial and a biaxial nematic structure. A thermalized distribution, however, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of annealing is already sufficient to stabilize a biaxial nematic structure.
Resumo:
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature.
Resumo:
We propose a schematic model to study the formation of excitons in bilayer electron systems. The phase transition is signalized both in the quantum and classical versions of the model. In the present contribution we show that not only the quantum ground state but also higher energy states, up to the energy of the corresponding classical separatrix orbit, ""sense"" the transition. We also show two types of one-to-one correspondences in this system: On the one hand, between the changes in the degree of entanglement for these low-lying quantum states and the changes in the density of energy levels; on the other hand, between the variation in the expected number of excitons for a given quantum state and the behavior of the corresponding classical orbit.