94 resultados para Polymer fibers
Resumo:
In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America
Resumo:
This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power. (C) 2009 Optical Society of America
Resumo:
We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches-a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493241]
Resumo:
Shallow subsurface layers of gold nanoclusters were formed in polymethylmethacrylate (PMMA) polymer by very low energy (49 eV) gold ion implantation. The ion implantation process was modeled by computer simulation and accurately predicted the layer depth and width. Transmission electron microscopy (TEM) was used to image the buried layer and individual nanoclusters; the layer width was similar to 6-8 nm and the cluster diameter was similar to 5-6 nm. Surface plasmon resonance (SPR) absorption effects were observed by UV-visible spectroscopy. The TEM and SPR results were related to prior measurements of electrical conductivity of Au-doped PMMA, and excellent consistency was found with a model of electrical conductivity in which either at low implantation dose the individual nanoclusters are separated and do not physically touch each other, or at higher implantation dose the nanoclusters touch each other to form a random resistor network (percolation model). (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3231449]
Resumo:
We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter similar to 2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.
Resumo:
A buried conducting layer of metal/polymer nanocomposite was formed by very low energy gold ion implantation into polymethylmethacrylate. The conducting layer is similar to 3 nm deep and of width similar to 1 nm. In situ resistivity measurements were performed as the implantation proceeded, and the conductivity thus obtained as a function of buried gold concentration. The measured conductivity obeys the behavior well established for composites in the percolation regime. The critical concentration, below which the polymer remains an insulator, is attained at a dose similar to 1.0 x 10(16) atoms/cm(2) of implanted gold ions. (C) 2008 American Institute of Physics.
Resumo:
Microfabrication via two-photon absorption polymerization is a technique to design complex microstructures in a simple and fast way. The applications of such structures range from mechanics to photonics to biology, depending on the dopant material and its specific properties. In this paper, we use two-photon absorption polymerization to fabricate optically active microstructures containing the conductive and luminescent polymer poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). We verify that MEH-PPV retains its optical activity and is distributed throughout the microstructure after fabrication. The microstructures retain the emission characteristics of MEH-PPV and allow waveguiding of locally excited fluorescence when fabricated on top of low refractive index substrates. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3232207]
Resumo:
We report the microwave dielectric properties and photoluminescence of undoped and europium oxide doped Ta(2)O(5) fibers, grown by laser heated pedestal growth technique. The effects of Eu(2)O(3) doping (1-3 mol %) on the structural, optical, and dielectric properties were investigated. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for Eu(2)O(3) doped Ta(2)O(5) samples it increases, reaching up to 36 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. For this wide band gap oxide, Eu(3+) optical activation was achieved and the emission is observed up to room temperature. Thus, the transparency and high permittivity make this material promising for electronic devices and microwave applications. (c) 2008 American Institute of Physics.
Resumo:
PANI films were deposited on glass substrates by in-situ polymerization and characterized by UV-VIS spectroscopy and atomic force microscopy. A method is developed to accurately analyze ellipsometric data obtained for transparent glass substrates before and after modification with absorbing polymer films. Surface modification was made with an overlayer such as polyaniline ( PANI), which exhibits different optical properties by varying its oxidation state. First, the issue of using transparent substrates for ellipsometry studies was examined and then, spectroscopic ellipsometry was used to characterize absorbing overlayers on transparent glasses. The same methodologies of data analysis can be also applied to other absorbing films on transparent substrates, and deposited by different techniques.
Resumo:
In this work is reported the sensitization effect by polymer matrices on the photoluminescence properties of diaquatris(thenoyltrifluoroacetonate)europium(III), [Eu(tta)(3)(H(2)O)(2)], doped into poly-beta-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, 7 and 10% (mass) in film form. TGA results indicated that the Eu(3+) complex precursor was immobilized in the polymer matrix by the interaction between the Eu(3+) complex and the oxygen atoms of the PHB polymer when the rare earth complex was incorporated in the polymeric host. The thermal behaviour of these luminescent systems is similar to that of the undoped polymer, however, the T(onset) temperature of decomposition decreases with increase of the complex doping concentration. The emission spectra of the Eu(3+) complex doped PHB films recorded at 298 K exhibited the five characteristic bands arising from the (5)D(0) -> (7)F(J) intraconfigurational transitions (J = 0-4). The fact that the quantum efficiencies eta of the doped film increased significantly revealed that the polymer matrix acts as an efficient co-sensitizer for Eu(3+) luminescent centres and therefore enhances the quantum efficiency of the emitter (5)D(0) level. The luminescence intensity decreases, however, with increasing precursor concentration in the doped polymer to greater than 5% where a saturation effect is observed at this specific doping percentage, indicating that changes in the polymeric matrix improve the absorption property of the film, consequently quenching the luminescent effect.
Resumo:
This study outlines the quantification of low levels of Alicyclobacillus acidoterrestris in pure cultures, since this bacterium is not inactivated by pasteurization and may remain in industrialized foods and beverages. Electroconductive polymer-modified fluorine tin oxide (FTO) electrodes and multiple nanoparticle labels were used for biosensing. The detection of A. acidoterrestris in pure cultures was performed by reverse transcription polymerase chain reaction (RT-PCR) and the sensitivity was further increased by asymmetric nested RT-PCR using electrochemical detection for quantification of the amplicon. The quantification of nested RT-PCR products by Ag/Au-based electrochemical detection was able to detect 2 colony forming units per mL (CFU mL(-1)) of spores in pure culture and low detection and quantification limits (7.07 and 23.6 nM, respectively) were obtained for the target A. acidoterrestris on the electrochemical detection bioassay.
Resumo:
Natural fibers used in this study were both pre-treated and modified residues from sugarcane bagasse. Polymer of high density polyethylene (HDPE) was employed as matrix in to composites, which were prodUced by mixing high density polyethylene with cellulose (10%) and Cell/ZrO(2)center dot nH(2)O (10%), using an extruder and hydraulic press. Tensile tests showed that the Cell/ZrO(2)center dot nH(2)O (10%)/HDPE composites present better tensile strength than cellulose (10%)/HDPE composites. Cellulose agglomerations were responsible for poor adhesion between fiber and matrix in cellulose (10%)/HDPE composites. HDPF/natural fibers composites showed also lower tensile strength in comparison to the polymer. The increase in Young`s modulus is associated to fibers reinforcement. SEM analysis showed that the cellulose fibers insertion in the matrix Caused all increase of defects, which were reduced When modified cellulose fibers were Used. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T(c) and Delta H(c) increases. As a Conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.
Resumo:
This article presents the use of fibers residue from textile industry to minimize environmental problems associated with material accumulation. Composite materials utilizing textile fiber residues and high density polyethylene were prepared. Effect of treatment with hot water on fibers to prepare composites was studied to provide an improvement in mechanical properties of these materials. This treatment on fibers was evaluated by X-ray diffraction and scanning electron microscopy techniques. Experimental results of mechanical properties indicated higher mechanical strength for treated fiber composites compared to the untreated fiber composites.
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.