136 resultados para Poisson Regression Model
Resumo:
Estudo transversal de base populacional que investigou prevalênciasde anemia e fatores associados à anemia, anemia ferropriva e deficiência de ferro entre crianças de 6 a 60 meses da área urbana de dois municípios do Acre, Brasil (N = 624). Dosagens de hemoglobina sanguínea, ferritina e receptor solúvel de transferrina plasmáticas foram realizadas mediante sangue venoso. Condições sócio-econômicas, demográficas e de morbidade foram obtidas por questionário. Razões de prevalências foram calculadas por regressão de Poisson em modelo hierárquico. As prevalências de anemia, anemia ferropriva e deficiência de ferro foram de 30,6%, 20,9% e 43,5%, respectivamente. Menores de 24 meses apresentaram maior risco para anemia, anemia ferropriva e deficiência de ferro. Pertencer ao maior tercil do índice de riqueza conferiu proteção contra anemia ferropriva (RP = 0,62; IC95%: 0,40-0,98). Pertencer ao maior quartil do índice estatura/idade foi protetor contra anemia (0,62; 0,44-0,86) e anemia ferropriva (0,51; 0,33-0,79), e ocorrência recente de diarréia representou risco (anemia: 1,47; 1,12-1,92 e anemia ferropriva: 1,44; 1,03-2,01). A infestação por geohelmintos conferiu risco para anemia, anemia ferropriva e deficiência de ferro.
Resumo:
OBJETIVO: Analisar prevalências de inatividade física e fatores associados, e exercícios e esportes praticados segundo escolaridade em 2.050 adultos de 18 a 59 anos de idade - Estado de São Paulo, Brasil. MÉTODOS: Estudo transversal de base populacional com amostra estratificada e em múltiplos estágios. A inatividade física global foi aferida pelo International Physical Activity questionary - IPAQ short version, e por questão sobre prática regular de atividade física no lazer. A análise dos dados levou em conta o desenho amostral. RESULTADOS: A prevalência de inatividade física no lazer foi maior entre as mulheres. Já a inatividade física pelo IPAQ foi maior entre os homens. Modelos de regressão múltipla de Poisson indicaram, nos homens, menor inatividade física pelo IPAQ nos solteiros e separados, estudantes e aqueles que não possuíam carro. A inatividade física no lazer foi maior nos homens acima de 40 anos e com menor escolaridade ou apenas estudantes. A inatividade física pelo IPAQ, nas mulheres, foi mais prevalente entre as com maior escolaridade, ocupações menos qualificadas e viúvas; a inatividade física no lazer diminuiu com o aumento da idade e da escolaridade. Entre as modalidades praticadas no lazer, a caminhada foi a mais prevalente nas mulheres e o futebol nos homens. A maioria das modalidades foi diretamente associada à escolaridade; aproximadamente 25% dos indivíduos com mais de 12 anos de estudo praticava caminhada. CONCLUSÕES: Estes resultados sugerem que intervenções e políticas públicas de promoção da atividade física devem considerar diferenças socioeconômicas, de gênero, bem como as modalidades e o contexto em que a atividade física é praticadA
Resumo:
OBJETIVO: Descrever a prevalência e analisar fatores associados ao retardo estatural em menores de cinco anos. MÉTODOS: Estudo “baseline”, que analisou 2.040 menores de cinco anos, verificando possíveis associações entre o retardo estatural (índice altura/idade ≤ 2 escores Z) e variáveis hierarquizadas em seis blocos: socioeconômicas, do domicílio, do saneamento, maternas, biológicas e de acesso aos serviços de saúde. A análise multivariada foi realizada por regressão de Poisson, com opção de erro padrão robusto, obtendo-se as razões de prevalência ajustadas, com IC 95por cento e respectivos valores de significância. RESULTADOS: Entre as variáveis não dicotômicas, houve associação positiva com tipo de teto e número de moradores por cômodo e associação negativa com renda, escolaridade da mãe e peso ao nascer. A análise ajustada indicou ainda como variáveis significantes: abastecimento de água, visita do agente comunitário de saúde, local do parto, internação por diarréia e internação por pneumonia. CONCLUSÃO: Os fatores identificados como de risco para o retardo estatural configuram a multicausalidade do problema, implicando na necessidade de intervenções multisetoriais e multiníveis para o seu controle
Resumo:
In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.
Resumo:
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
SETTING: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death among adults in Brazil. OBJECTIVE: To evaluate the mortality and hospitalisation trends in Brazil caused by COPD during the period 1996-2008. DESIGN: We used the health official statistics system to obtain data about mortality (1996-2008) and morbidity (1998-2008) due to COPD and all respiratory diseases (tuberculosis: codes A15-16; lung cancer: code C34, and all diseases coded from J40 to 47 in the 10th Revision of the International Classification of Diseases) as the underlying cause, in persons aged 45-74 years. We used the Joinpoint Regression Program log-linear model using Poisson regression that creates a Monte Carlo permutation test to identify points where trend lines change significantly in magnitude/direction to verify peaks and trends. RESULTS: The annual per cent change in age-adjusted death rates due to COPD declined by 2.7% in men (95%CI -3.6 to -1.8) and -2.0% (95%CI -2.9 to -1.0) in women; and due to all respiratory causes it declined by -1.7% (95%CI 2.4 to -1.0) in men and -1.1% (95%CI -1.8 to -0.3) in women. Although hospitalisation rates for COPD are declining, the hospital admission fatality rate increased in both sexes. CONCLUSION: COPD is still a leading cause of mortality in Brazil despite the observed decline in the mortality/hospitalisation rates for both sexes.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.
Resumo:
Considering the Wald, score, and likelihood ratio asymptotic test statistics, we analyze a multivariate null intercept errors-in-variables regression model, where the explanatory and the response variables are subject to measurement errors, and a possible structure of dependency between the measurements taken within the same individual are incorporated, representing a longitudinal structure. This model was proposed by Aoki et al. (2003b) and analyzed under the bayesian approach. In this article, considering the classical approach, we analyze asymptotic test statistics and present a simulation study to compare the behavior of the three test statistics for different sample sizes, parameter values and nominal levels of the test. Also, closed form expressions for the score function and the Fisher information matrix are presented. We consider two real numerical illustrations, the odontological data set from Hadgu and Koch (1999), and a quality control data set.
Resumo:
Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].
Resumo:
In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective. To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Methods. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors ( situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects ( such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. Results. A 10 mu g/m(3) increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. Conclusions. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.