22 resultados para Physical and Theoretical Chemistry
Resumo:
The objective of this study was to evaluate the effects of diet supplementation with vitamin E on the physical and chemical characteristics of ground, frozen and stored or aged Quadriceps femoris (QF) and Longissimus dorsi (LD) muscles from Nellore steers fed high concentrate diets. Muscles were obtained from 24 animals that were 30 months old with a mean live weight of 279 kg. Half of the animals received daily doses of 1,000 mg of alpha-tocopherol acetate (VIT E) per head per day that was added to 100 g of corn meal. The other half received 100 g of corn meal without the antioxidant. Twenty-four hours after slaughtering, QF samples from each animal were ground, frozen and stored for up to 6 months. In addition, 4 samples from the LD of each animal were vacuum packed individually and kept for 21 days. All samples were analyzed to determine the pH, color and water-holding-capacity. The VIT E supplementation improved only the water loss characteristics of frozen ground QF and did not have any positive effect on the physical-chemical characteristics of the aged LD.
Resumo:
The objective of this work was to analyze mechanical, physical and thermal performance of roofing tiles produced with several formulations of cement-based matrices reinforced with sisal and eucalyptus fibers. The physical properties of the tiles were more influenced by the fiber content of the composite than by the type of reinforcement. The type of the fiber was the main variable for the achievement of the best results of mechanical properties. Exposure to tropical climate has caused a severe reduction in the mechanical properties of the composites. After approximately four months of age under external weathering the toughness of the vegetable fiber-cement fell to 53-68% of the initial toughness at 28 days of age. The thermal performance showed that roofing tiles reinforced with vegetable fiber are acceptable as substitutes of asbestos-cement sheets. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report on measurements of total cross sections (TCSs) for positron scattering from the fundamental organic molecule formaldehyde (CH(2)O). The energy range of these measurements was 0.26-50.3 eV, whereas the energy resolution was similar to 260 meV. To assist us in interpreting these data, Schwinger multichannel level calculations for positron elastic scattering from CH(2)O were also undertaken (0.5-50 eV). These calculations, incorporating an accurate model for the target polarization, are found to be in good qualitative agreement with our measured data. In addition, in order to compare the behaviour of positron and electron scattering from this species, independent atom model-screened additivity rule theoretical electron TCSs, now for energies in the range 1-10 000 eV, are also reported.
Resumo:
In this work we realized and experimental and theoretical study of the N-alkylation of nitroimidazoles. The N-alkyl-2-methyl-nitroimidazoles correspond to biologically active molecules, obtained by reaction of 2-methyl-5-nitroimidazole and different alkyl halides. This reaction showed the formation of a mixture of isomeric products in different proportions, denominated like N-alkyl-2-methyl-4-nitroimidazole and N-alkyl-2-methyl-5-nitroimidazole, respectively. The reaction suggestes the formation of a tautomeric equilibrium, which generates two nucleophilic sites susceptible to electrophilic attack by the alkyl halide. The local nucleophilic reactivity of the nitroimidazole nng is determined using local reactivity indices such as the Fukui function and the electrostatic potential, besides the electronic localization function (ELF). The Fukui function was integrated for each atom using partition schemes based on analysis of Mulliken charges and natural bond orbital (NBO). Finally the reaction profiles were assessed. The results show a minor difference in the local reactivity. Nevertheless a significant difference in energy barriers is observed explaining the formation of an isomeric product over another. These results agree quite well with the experimental data.
Resumo:
355 nm light irradiation of fac-[Mn(CO)(3)(phen)(imH)](+) (fac-1) produces the mer-1 isomer and a long lived radical which can be efficiently trapped by electron acceptor molecules. EPR experiments shows that when excited, the manganese(I) complex can be readily oxidized by one-electron process to produce Mn(II) and phen(.-). In the present study, DFT calculations have been used to investigated the photochemical isomerization of the parent Mn(I) complex and to characterize the electronic structures of the long lived radical. The theoretical calculations have been performed on both the fac-1 and mer-1 species as well as on their one electron oxidized species fac-1+ and mer-1+ for the lowest spin configurations (S = 1/2) and fac-6 and mer-6 (S = 5/2) for the highest one to characterize these complexes. In particular, we used a charge decomposition analysis (CDA) and a natural bonding orbital (NBO) to have a better understanding of the chemical bonding in terms of the nature of electronic interactions. The observed variations in geometry and bond energies with an increasing oxidation state in the central metal ion are interpreted in terms of changes in the nature of metal-ligand bonding interactions. The X-ray structure of fac-1 is also described. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface-enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M(4)(py) (four metal atoms bonded to one py moiety) and M(4)(alpha-pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M(4)(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed alpha-pyridil species, as suggested previously. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In order to evaluate the interactions between Au/Cu atoms and clean Si(l 11) surface, we used synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations. Optimized geometries and energies on different adsorption sites indicate that the binding energies at different adsorption sites are high, suggesting a strong interaction between metal atom and silicon surface. The Au atom showed higher interaction than Cu atom. The theoretical and experimental data showed good agreement. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.