51 resultados para Phospholipid liposomes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protozoan parasite Leishmania causes serious infections in humans all over the world. After being inoculated into the skin through the bite of an infected sandfly, Leishmania promastigotes must gain entry into macrophages to initiate a successful infection. Specific, surface exposed phospholipids have been implicated in Leishmania-macrophage interaction but the mechanisms controlling and regulating the plasma membrane lipid distribution remains to be elucidated. Here, we provide evidence for Ca(2+)-induced phospholipid scrambling in the plasma membrane of Leishmania donovani. Stimulation of parasites with ionomycin increases intracellular Ca(2+) levels and triggers exposure of phosphatidylethanolamine at the cell surface. We found that increasing intracellular Ca(2+) levels with ionomycin or thapsigargin induces rapid transbilayer movement of NBD-labelled phospholipids in the parasite plasma membrane that is bidirectional, independent of cellular ATP and not specific to the polar lipid head group. The findings suggest the presence of a Ca(2+)-dependent lipid scramblase activity in Leishmania parasites. Our studies further show that lipid scrambling is not activated by rapid exposure of promastigotes to higher physiological temperature that increases intracellular Ca(2+) levels. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin oil macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried Out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by Conk The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In Conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating ail immunomodulatory effect of phosphatidylcholine. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study was to verify whether post-menopausal hormone replacement therapy (HRT) modifies autoantibody titers against oxidized low-density lipoprotein (LDL) (anti-LDLoxi), against epitopes of oxidized apolipoprotein B100 and common carotid intima-media thickness (IMT) in these women. Sixty-eight women in pre-menopause (PMW) and 216 in post-menopause (POMW) were recruited; eighty-three had undergone HRT for at least 12 months, where 48 received conjugated estrogens alone (EHRT) and 35 received conjugated estrogen and medroxyprogesterone acetate (CHRT). ELISA was used to determine autoantibodies. Lipoprotein lipase (LPL), hepatic lipase (HL), cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP) activities were assayed by radiometric methods. IMT was measured using Doppler ultrasound. Anti-oxidized LDL and anti-D antibodies increased by 40% (p <= 0.003) and 42% (p <= 0.006), respectively, with menopause. There was a surprising and significant 7% reduction in anti-D2 antibody titers with HRT (p <= 0.050), indicating a positive effect of treatment on the immune response to oxidized LDL. Combined HRT decreased activities of HL and LPL. HRT did not change common carotid IMT, which was increased by 32% as expected after menopause (p <= 0.030). This study describes, for the first time, the protective effect of HRT on decreasing autoantibody titers against oxidized apolipoprotein B in LDL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure of phosphatidylserine (PS) on cellular membranes and membrane-derived microvesicles stimulates a number of anti-inflammatory responses involved in malignant processes. Herein we show that B16F10 cells, a highly metastatic melanoma cell line, produce large quantities of PS-containing microvesicles in vitro. Tumor microvesicles increased TGF-beta(1) production by cultured macrophages and, in vivo, enhanced the metastatic potential of B16F10 cells in C57BL/6 mice, both effects being reversed by annexin V. Most strikingly, microvesicles induced melanoma metastasis in BALB/c mice, which are normally resistant to this tumor cell line. Altogether, this is the first demonstration that tumor-derived microvesicles favor the establishment of melanoma metastasis in a PS-dependent manner, possibly by down-regulating the host`s inflammatory and/or anti-tumoral immune responses. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many potent antimicrobial peptides also present hemolytic activity, an undesired collateral effect for the therapeutic application. Unlike other mastoparan peptides, Polybia-MP1 (IDWKKLLDAAKQIL), obtained from the venom of the social wasp Polybia paulista, is highly selective of bacterial cells. The study of its mechanism of action demonstrated that it permeates vesicles at a greater rate of leakage on the anionic over the zwitterionic, impaired by the presence of cholesterol or cardiolipin; its lytic activity is characterized by a threshold peptide to lipid molar ratio that depends on the phospholipid composition of the vesicles. At these particular threshold concentrations, the apparent average pore number is distinctive between anionic and zwitterionic vesicles, suggesting that pores are similarly formed depending on the ionic character of the bilayer. To prospect the molecular reasons for the strengthened selectivity in Polybia-MP1 and its absence in Mastoparan-X, MD simulations were carried out. Both peptides presented amphipathic alpha-helical structures, as previously observed in Circular Dichroism spectra, with important differences in the extension and stability of the helix; their backbone solvation analysis also indicate a different profile, suggesting that the selectivity of Polybia-MP1 is a consequence of the distribution of the charged and polar residues along the peptide helix, and on how the solvent molecules orient themselves according to these electrostatic interactions. We suggest that the lack of hemolytic activity of Polybia-MP1 is due to the presence and position of Asp residues that enable the equilibrium of electrostatic interactions and favor the preference for the more hydrophilic environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersions of saturated anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) have been extensively studied regarding their peculiar thermostructural behavior. At low ionic strength, the gel-fluid transition is spread along nearly 17 degrees C, displaying several thermal events in the calorimetric profile that is quite different from the single sharp peak around 23 degrees C found for higher ionic strength DMPG dispersions. To investigate the role of charge in the bilayer transition, we carefully examine the temperature dependence of the electrical conductivity of DMPG dispersions at different concentrations, correlating the data with the corresponding differential scanning calorimetry (DSC) traces. Electrical conductivity together with electrophoretic mobility measurements allowed the calculation of the dependence of the degree of ionization of DMPG vesicles on lipid concentration and temperature. It was shown that there is a decrease in vesicle charge as the lipid concentration increases, which is probably correlated with the increase in the concentration of bulk Na(+). Apart from the known increase in the electrical conductivity along the DMPG temperature transition region, a sharp rise was observed at the bilayer pretransition for all lipid concentrations studied, possibly indicating that the beginning of the chain melting process is associated with an increase in bilayer ionization. It is confirmed here that the gel-fluid transition of DMPG at low ionic strength is accompanied by a huge increase in the dispersion viscosity. However, it is shown that this measured macroviscosity is distinct from the local viscosity felt by either charged ions or DMPG charged aggregates in measurements of electrical conductivity or electrophoretic mobility, Data presented here give support to the idea that DMPG vesicles, at low ionic strength, get more ionized along the temperature transition region and could be perforated and/or deformed vesicle structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthetic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG), when dispersed in water/NaCl exhibits a complex phase behavior caused by its almost unlimited swelling in excess water. Using deuterium ((2)H)- and phosphorus ((31)P)-NMR we have studied the molecular properties of DMPG/water/NaCl dispersions as a function of lipid and NaCl concentration. We have measured the order profile of the hydrophobic part of the lipid bilayer with deuterated DMPG while the orientation of the phosphoglycerol headgroup was deduced from the (31)P NMR chemical shielding anisotropy. At temperatures > 30 degrees C we observe well-resolved (2)H- and (31)P NMR spectra not much different from other liquid crystalline bilayers. From the order profiles it is possible to deduce the average length of the flexible fatty acyl chain. Unusual spectra are obtained in the temperature interval of 20-25 degrees C, indicating one or several phase transitions. The most dramatic changes are seen at low lipid concentration and low ionic strength. Under these conditions and at 25 degrees C, the phosphoglycerol headgroup rotates into the hydrocarbon layer and the hydrocarbon chains show larger flexing motions than at higher temperatures. The orientation of the phosphoglycerol headgroup depends on the bilayer surface charge and correlates with the degree of dissociation of DMPG-Na(+). The larger the negative surface charge, the more the headgroup rotates toward the nonpolar region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic lipids-DNA complexes (lipoplexes) have been used for delivery of nucleic acids into cells in vitro and in vivo. Despite the fact that, over the last decade, significant progress in the understanding of the cellular pathways and mechanisms involved in lipoplexes-mediated gene transfection have been achieved, a convincing relationship between the structure of lipoplexes and their in vivo and in vitro transfection activity is still missing. How does DNA affect the lipid packing and what are the consequences for transfection efficiency is the point we want to address here. We investigated the bilayer organization in cationic liposomes by electron spin resonance (ESR). Phospholipids spin labeled at the 5th and 16th carbon atoms were incorporated into the DNA/diC14-amidine complex. Our data demonstrate that electrostatic interactions involved in the formation of DNA-cationic lipid complex modify the packing of the cationic lipid membrane. DNA rigidifies the amidine fluid bilayer and fluidizes the amidine rigid bilayer just below the gel-fluid transition temperature. These effects were not observed with single nucleotides and are clearly related to the repetitive charged motif present in the DNA chain and not to a charge-charge interaction. These modifications of the initial lipid packing of the cationic lipid may reorient its cellular pathway towards different routes. A better knowledge of the cationic lipid packing before and after interaction with DNA may therefore contribute to the design of lipoplexes capable to reach specific cellular targets. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the bilayer pre-transition exhibited by some lipids at temperatures below their main phase transition, and which is generally associated to the formation of periodic ripples in the membrane. Experimentally we focus on the anionic lipid dipalmytoylphosphatidylglycerol (DPPG) at different ionic strengths, and on the neutral lipid dipalmytoylphosphatidylcholine (DPPC). From the analysis of differential scanning calorimetry traces of the two lipids we find that both pre- and main transitions are part of the same melting process. Electron spin resonance of spin labels and excitation generalized polarization of Laurdan reveal the coexistence of gel and fluid domains at temperatures between the pre- and main transitions of both lipids, reinforcing the first finding. Also, the melting process of DPPG at low ionic strength is found to be less cooperative than that of DPPC. From the theoretical side, we introduce a statistical model in which a next-nearest-neighbor competing interaction is added to the usual two-state model. For the first time, modulated phases (ordered and disordered lipids periodically aligned) emerge between the gel and fluid phases as a natural consequence of the competition between lipid-lipid interactions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barbaloin is a bioactive glycosilated 1,8-dihydroxyanthraquinone present in several exudates from plants, Such as Aloe vera, which are used for cosmetic or food purposes. It has been shown that barbaloin interacts with DMPG (dimyristoylphosphatidylglycerol) model membranes, altering the bilayer structure (Alves, D. S.; Perez-Fons, L.; Estepa, A.; Micol, V. Biochem. Pharm. 2004, 68, 549). Considering that ESR (electron spin resonance) of spin labels is one of the best techniques to monitor structural properties at the molecular level, the alterations caused by the anthraquinone barbaloin on phospholipid bilayers will be discussed here via the ESR signal of phospholipid spin probes intercalated into the membranes. In DMPG at high ionic strength (10 mM Hepes pH 7.4 + 100 mM NaCl), a system that presents a gel-fluid transition around 23 degrees C, 20 mol % barbaloin turns the gel phase more rigid, does not alter much the fluid phase packing, but makes the lipid thermal transition less sharp. However, in a low-salt DMPG dispersion (10 mM Hepes pH 7.4 + 2 mM NaCl), which presents a rather complex gel-fluid thermal transition (Lamy-Freund, M. T.; Riske, K. A. Chem. Phys. Lipids 2003, 122, 19), barbaloin strongly affects bilayer structural properties, both in the gel and fluid phases, extending the transition region to much higher temperature values. The position of barbaloin in DMPG bilayers will be discussed on the basis of ESR results, in parallel with data from sample viscosity, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering).