87 resultados para Non-gaussian statistical mechanics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a simple mean-field lattice model to describe the behavior of nematic elastomers. This model combines the Maier-Saupe-Zwanzig approach to liquid crystals and an extension to lattice systems of the Warner-Terentjev theory of elasticity, with the addition of quenched random fields. We use standard techniques of statistical mechanics to obtain analytic solutions for the full range of parameters. Among other results, we show the existence of a stress-strain coexistence curve below a freezing temperature, analogous to the P-V diagram of a simple fluid, with the disorder strength playing the role of temperature. Below a critical value of disorder, the tie lines in this diagram resemble the experimental stress-strain plateau and may be interpreted as signatures of the characteristic polydomain-monodomain transition. Also, in the monodomain case, we show that random fields may soften the first-order transition between nematic and isotropic phases, provided the samples are formed in the nematic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two-dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so-called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate results even considering relatively small lattice sizes. In this paper, we introduce an estimator that locates quantum critical points by exploring the known distinct behavior of the entanglement entropy in critical and noncritical systems. As a benchmark test, we use this new estimator to locate the critical point of the quantum Ising chain and the critical line of the spin-1 Blume-Capel quantum chain. The tricritical point of this last model is also obtained. Comparison with the standard crossing method is also presented. The method we propose is simple to implement in practice, particularly in density matrix renormalization group calculations, and provides us, like the crossing method, amazingly accurate results for quite small lattice sizes. Our applications show that the proposed method has several advantages, as compared with the standard crossing method, and we believe it will become popular in future numerical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the performance of a variant of Axelrod's model for dissemination of culture-the Adaptive Culture Heuristic (ACH)-on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents' strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N(1/4) so that the number of agents must increase with the fourth power of the problem size, N proportional to F(4), to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F(6) which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of the adoption of new products by agents with continuous opinions and discrete actions (CODA). The model is such that the refusal in adopting a new idea or product is increasingly weighted by neighbor agents as evidence against the product. Under these rules, we study the distribution of adoption times and the final proportion of adopters in the population. We compare the cases where initial adopters are clustered to the case where they are randomly scattered around the social network and investigate small world effects on the final proportion of adopters. The model predicts a fat tailed distribution for late adopters which is verified by empirical data. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Random Parameter model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore the scaling properties of the model, as observed in the multifractal structure of the simulated time series. We use the Wavelet Transform Modulus Maxima technique to obtain the multifractal spectrum dependence with the parameters of the model. The model shows a scaling structure compatible with the stylized facts for a reasonable choice of the parameter values. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study an agent based model to investigate the role of asymmetric information degrees for market evolution. This model is quite simple and may be treated analytically since the consumers evaluate the quality of a certain good taking into account only the quality of the last good purchased plus her perceptive capacity beta. As a consequence, the system evolves according to a stationary Markov chain. The value of a good offered by the firms increases along with quality according to an exponent alpha, which is a measure of the technology. It incorporates all the technological capacity of the production systems such as education, scientific development and techniques that change the productivity rates. The technological level plays an important role to explain how the asymmetry of information may affect the market evolution in this model. We observe that, for high technological levels, the market can detect adverse selection. The model allows us to compute the maximum asymmetric information degree before the market collapses. Below this critical point the market evolves during a limited period of time and then dies out completely. When beta is closer to 1 (symmetric information), the market becomes more profitable for high quality goods, although high and low quality markets coexist. The maximum asymmetric information level is a consequence of an ergodicity breakdown in the process of quality evaluation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil CO(2) emissions are highly variable, both spatially and across time, with significant changes even during a one-day period. The objective of this study was to compare predictions of the diurnal soil CO(2) emissions in an agricultural field when estimated by ordinary kriging and sequential Gaussian simulation. The dataset consisted of 64 measurements taken in the morning and in the afternoon on bare soil in southern Brazil. The mean soil CO(2) emissions were significantly different between the morning (4.54 mu mol m(-2) s(-1)) and afternoon (6.24 mu mol m(-2) s(-1)) measurements. However, the spatial variability structures were similar, as the models were spherical and had close range values of 40.1 and 40.0 m for the morning and afternoon semivariograms. In both periods, the sequential Gaussian simulation maps were more efficient for the estimations of emission than ordinary kriging. We believe that sequential Gaussian simulation can improve estimations of soil CO(2) emissions in the field, as this property is usually highly non-Gaussian distributed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predators and preys often form species networks with asymmetric patterns of interaction. We study the dynamics of a four species network consisting of two weakly connected predator-prey pairs. We focus our analysis on the effects of the cross interaction between the predator of the first pair and the prey of the second pair. This is an example where the predator overlap, which is the proportion of predators that a given prey shares with other preys, is not uniform across the network due to asymmetries in patterns of interaction. We explore the behavior of the system under different interaction strengths and study the dynamics of survival and extinction. In particular, we consider situations in which the four species have initial populations lower than their long-term equilibrium, simulating catastrophic situations in which their abundances are reduced due to human action or environmental change. We show that, under these reduced initial conditions, and depending on the strength of the cross interaction, the populations tend to oscillate before re-equilibrating, disturbing the community equilibrium and sometimes reaching values that are only a small fraction of the equilibrium population, potentially leading to their extinction. We predict that, contrary to one`s intuition, the most likely scenario is the extinction of the less predated preys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids. (C) 2010 Elsevier B.V. All rights reserved.