21 resultados para Mayo, Carlos Alberto


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Several lines of evidence support an immunologic involvement in obsessive-compulsive disorder (OCD): the increased prevalence of OCD in patients with rheumatic fever (RF), and the aggregation of obsessive-compulsive spectrum disorders among relatives of RF probands. Tumor necrosis factor alpha is a proinflammatory cytokine involved in RF and other autoimmune diseases. Polymorphisms in the promoter region of the TNFA gene have been associated with RE Given the association between OCD and RF, the goal of the present study was to investigate a possible association between polymorphisms within the promoter region of TNFA and OCD. Materials and methods: Two polymorphisms were investigated: -308 G/A and -238 G/A. The allelic and genotypic frequencies of these polymorphisms were examined in 111 patients who fulfilled DSM-IV criteria for OCD and compared with the frequencies in 250 controls. Results: Significant associations were observed between both polymorphisms and OCD. For -238 G/A, an association between the A allele and OCD was observed (X-2 = 12.05, p = 0.0005). A significant association was also observed between the A allele of the -308 G/A polymorphism and OCD (X-2 = 7.09, p = 0.007). Finally, a haplotype consisting of genotypes of these two markers was also examined. Significant association was observed for the A-A haplotype (p = 0.0099 after correcting for multiple testing). Discussion: There is association between the -308 G/A and -238 G/A TNFA polymorphisms and OCD in our Brazilian sample. However, these results need to be replicated in larger samples collected from different populations. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Allyl 1-naphthyl ethers are useful compounds for different purposes, but reported methods to synthesize them require long reaction times. In this work, we have obtained allyl 1-naphthyl ether in good yield using ultrasonic-assisted methodology in a 1-h reaction. A central composite design was used to obtain a statistical model and a response surface (p < 0.05; R(2) = 0.970; R(adj)(2) = 0.949; R(pred)(2) = 0.818) that can predict the optimal conditions to maximize the yield, validated experimentally. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. It was recently found that the isoflavone genistein (GEN) potently inhibits TTR amyloid fibril formation (Green et al., 2005) and is therefore a promising candidate for TTR amyloidosis treatment. Here we used structural and biophysical approaches to characterize genistein binding to the wild type (TTRwt) and to its most frequent amyloidogenic variant, the V30M mutant. In a dose-dependent manner, genistein elicited considerable increases in both mutant and TTRwt stability as demonstrated by high hydrostatic pressure (HHP) and acid-mediated dissociation/denaturation assays. TTR:GEN crystal complexes and isothermal titration calorimetry (ITC) experiments showed that the binding mechanisms of genistein to the TTRwt and to V30M are different and are dependent on apoTTR structure conformations. Furthermore, we could also identify potential allosteric movements caused by genistein binding to the wild type TTR that explains, at least in part, the frequently observed negatively cooperative process between the two sites of TTRwt when binding ligands. These findings show that TTR mutants may present different ligand recognition and therefore are of value in ligand design for inhibiting TTR amyloidosis. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In previous studies, we identified promising anti-Trypanosoma cruzi cruzain inhibitors based on thiazolylhydrazones. To optimize this series, a number of medicinal chemistry directions were explored and new thiazolylhydrazones and thiosemicarbazones were thus synthesized. Potent cruzain inhibitors were identified, such as thiazolylhydrazones 3b and 3j, which exhibited IC(50) of 200-400 nM. Furthermore, molecular docking studies showed concordance with experimentally derived structure-activity relationships (SAR) data. In the course of this work, lead compounds exhibiting in vitro activity against both the epimastigote and trypomastigote forms of T. cruzi were identified and in vivo general toxicity analysis was subsequently performed. Novel SAR were documented, including the importance of the thiocarbonyl carbon attached to the thiazolyl ring and the direct comparison between thiosemicarbazones and thiazolylhydrazones. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.