22 resultados para Marrow Transplantation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. The objective of this study was to show the morphologic characteristics of allograft renal biopsies in renal transplant patients with stable renal function, which can potentially be early markers of allograft dysfunction, after 5 years of follow-up. Methods. Forty-nine renal transplant patients with stable renal function were submitted to renal biopsies and simultaneous measurement of serum creatinine (Cr). Histology was evaluated using Banff scores, determination of interstitial fibrosis by Sirius red staining and immunohistochemical study of proximal tubule and interstitial compartment (using cytokeratin, vimentin, and myofibroblasts as markers). Biopsies were evaluated according to the presence or absence of the epitheliomesenchymal transition (EMT). The interstitial presence of myofibroblasts and tubular presence of vimentin was also analyzed simultaneously. Renal function was measured over the follow-up period to estimate the reduction of graft function. Results. Median posttransplant time at enrollment was 105 days. Patients were followed for 64.3 +/- 8.5 months. The mean Cr at biopsy time was 1.44 +/- 0.33 mg/dL, and after the follow-up it was 1.29 +/- 0.27 mg/dL. Nine patients (19%) had a reduction of their graft function. Eleven biopsies (22%) had tubulointerstitial alterations according to Banff score. Seventeen biopsies (34%) presented EMT. Fifteen biopsies (32%) had high interstitial expression of myofibroblasts and tubular vimentin. Using Cox multivariate analysis, HLA and high expression of interstitial myofibroblasts and tubular vimentin were associated with reduction of graft function, yielding a risk of 3.3 (P = .033) and 9.8 (P = .015), respectively. Conclusion. Fibrogenesis mechanisms occur very early after transplantation and are risk factors for long-term renal function deterioration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs and tibia, and after 6 h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24 h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about clinical differences associated with cytomegalovirus (CMV) infection by distinct strains in renal transplant patients. Different clinical pictures may be associated with specific viral genotypes. viral load, as well as host factors. The objective of this study was to identify CMV strains to determine viral load (antigenemia), and their correlation with clinical data in renal transplant recipients. Seventy-one patients were enrolled, comprising 91 samples. After selection, polymorphonuclear cells were used to amplify and sequence the gB region of CMV DNA. The sequences were analyzed to ascertain the frequency of different genotypes. Additionally, the results of this Study showed that the gB coding gene presents a great variability, revealing a variety of patterns: classical gB (1.4%), gB1V (46.4%), classical gB2 (35.2%), gB2V (2.8%), gB3 (1.4%), classical gB4 (4.9%) and gB4V (4.9%). The mean viral load in kidney transplant patient was 75.1 positive cells (1-1000). A higher viral load was observed in patients with genotype 4 infection. Statistically significant differences were detected between gB1 and gB4 (p=0.010), and between gB2 and gB4 (p=0.021). The average numbers of positive cells in relation to clinical presentation were: 34.5 in asymptomatic, 49.5 in CMV associated syndrome and 120.7 in patients with invasive disease (p=0.048). As a group, gB1 was the most frequent strain and revealed a potential risk for developing invasive disease. Viral load also seemed to be important as a marker associated with clinical presentation of the disease. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we evaluated whether administration of stem cells of neural origin (neural precursor cells, NPCs) could be protective against renal ischemia-reperfusion injury (IRI). We hypothesized that stem cell outcomes are not tissue-specific and that NPCs can improve tissue damage through paracrine mechanisms, especially due to immunomodulation. To this end, Wistar rats (200-250 g) were submitted to 1-hour ischemia and treated with NPCs (4 x 10(6) cells/animal) at 4 h of reperfusion. To serve as controls, ischemic animals were treated with cerebellum homogenate harvested from adult rat brain. All groups were sacrificed at 24 h of reperfusion. NPCs were isolated from rat fetus telencephalon and cultured until neurosphere formation (7 days). Before administration, NPCs were labeled with carboxyfluorescein diacetate succinimydylester (CFSE). Kidneys were harvested for analysis of cytokine profile and macrophage infiltration. At 24 h, NPC treatment resulted in a significant reduction in serum creatinine (IRI + NPC 1.21 + 0.18 vs. IRI 3.33 + 0.14 and IRI + cerebellum 2.95 + 0.78mg/dl, p < 0.05) and acute tubular necrosis (IRI + NPC 46.0 + 2.4% vs. IRI 79.7 + 14.2%, p < 0.05). NPC-CFSE and glial fibrillary acidic protein (GFAP)-positive cells (astrocyte marker) were found exclusively in renal parenchyma, which also presented GFAP and SOX-2 (an embryonic neural stem cell marker) mRNA expression. NPC treatment resulted in lower renal proinflammatory IL1-beta and TNF-alpha expression and higher anti-inflammatory IL-4 and IL-10 transcription. NPC-treated animals also had less macrophage infiltration and decreased serum proinflammatory cytokines (IL-1 beta, TNF-alpha and INF-gamma). Our data suggested that NPC therapy improved renal function by influencing immunological responses. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1) has a microsatellite polymorphism based on the number of guanosine-thymidine nucleotide repeats (GT) repeats that regulates expression levels and could have an impact on organ survival post-injury. We correlated HO-1 polymorphism with renal graft function. The HO-1 gene was sequenced (N = 181), and the allelic repeats were divided into subclasses: short repeats (S) (< 27 repeats) and long repeats (L) (>= 27 repeats). A total of 47.5% of the donors carried the S allele. The allograft function was statistically improved six months, two and three yr after transplantation in patients receiving kidneys from donors with an S allele. For the recipients carrying the S allele (50.3%), the allograft function was also better throughout the follow-up, but reached statistical significance only three yr after transplantation (p = 0.04). Considering only those patients who had chronic allograft nephropathy (CAN; 74 of 181), allograft function was also better in donors and in recipients carrying the S allele, two and three yr after transplantation (p = 0.03). Recipients of kidney transplantation from donors carrying the S allele presented better function even in the presence of CAN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of graft function at various stages after transplantation is relevant, particularly at the moment of organ harvest, when a decision must be made whether to use the organ. Autofluorescence spectroscopy is noninvasive technique to monitor the metabolic condition of a liver graft throughout its course, from an initial evaluation in the donor, through cold ischemia transportation, to reperfusion and reoxygenation in the recipient. Preliminary results are presented in six liver transplantations spanning the periods from liver harvest to implant. The laser-induced fluorescence spectrum at 532-mn excitation was investigated before cold perfusion (autofluorescence), during cold ischemia, at the back table procedure, as well as 5 and 60 minutes after reperfusion. The results showed that the fluorescence analysis was sensitive to changes during the transplantation procedure. Fluorescence spectroscopy potentially provides a real-time, noninvasive technique to monitor liver graft function. The information could potentially be valuable for surgical decisions and transplant success.