76 resultados para MCMC algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

J.A. Ferreira Neto, E.C. Santos Junior, U. Fra Paleo, D. Miranda Barros, and M.C.O. Moreira. 2011. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Cien. Inv. Agr. 38(2): 169-178. The objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot`s productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the canonical and microcanonical Monte Carlo algorithms for different systems that can be described by spin models. Sites of the lattice, chosen at random, interchange their spin values, provided they are different. The canonical ensemble is generated by performing exchanges according to the Metropolis prescription whereas in the microcanonical ensemble, exchanges are performed as long as the total energy remains constant. A systematic finite size analysis of intensive quantities and a comparison with results obtained from distinct ensembles are performed and the quality of results reveal that the present approach may be an useful tool for the study of phase transitions, specially first-order transitions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n vertices and m edges. To count the number of all the maximal cliques, without actually generating them, our algorithm requires O(log p) communication rounds with O(nm/p) local computation time. We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation, and to generate each one of the subsequent maximal cliques this algorithm requires O(log p) communication rounds with O(m/p) local computation. The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present an algorithm for this problem that uses O(log p) communication rounds with O(m/p) local computation for each maximal path. We also show that the presented algorithms can be extended to the CREW PRAM model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bipartite graph G = (V, W, E) is convex if there exists an ordering of the vertices of W such that, for each v. V, the neighbors of v are consecutive in W. We describe both a sequential and a BSP/CGM algorithm to find a maximum independent set in a convex bipartite graph. The sequential algorithm improves over the running time of the previously known algorithm and the BSP/CGM algorithm is a parallel version of the sequential one. The complexity of the algorithms does not depend on |W|.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo apresentamos uma análise Bayesiana para o modelo de volatilidade estocástica (SV) e uma forma generalizada deste, cujo objetivo é estimar a volatilidade de séries temporais financeiras. Considerando alguns casos especiais dos modelos SV usamos algoritmos de Monte Carlo em Cadeias de Markov e o software WinBugs para obter sumários a posteriori para as diferentes formas de modelos SV. Introduzimos algumas técnicas Bayesianas de discriminação para a escolha do melhor modelo a ser usado para estimar as volatilidades e fazer previsões de séries financeiras. Um exemplo empírico de aplicação da metodologia é introduzido com a série financeira do IBOVESPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: Desenvolver simulação computadorizada de ablação para produzir lentes de contato personalizadas a fim de corrigir aberrações de alta ordem. MÉTODOS: Usando dados reais de um paciente com ceratocone, mensurados em um aberrômetro ("wavefront") com sensor Hartmann-Shack, foram determinados as espessuras de lentes de contato que compensam essas aberrações assim como os números de pulsos necessários para fazer ablação as lentes especificamente para este paciente. RESULTADOS: Os mapas de correção são apresentados e os números dos pulsos foram calculados, usando feixes com a largura de 0,5 mm e profundidade de ablação de 0,3 µm. CONCLUSÕES: Os resultados simulados foram promissores, mas ainda precisam ser aprimorados para que o sistema de ablação "real" possa alcançar a precisão desejada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: Desenvolver a instrumentação e o "software" para topografia de córnea de grande-ângulo usando o tradicional disco de Plácido. O objetivo é permitir o mapeamento de uma região maior da córnea para topógrafos de córnea que usem a técnica de Plácido, fazendo-se uma adaptação simples na mira. MÉTODOS: Utilizando o tradicional disco de Plácido de um topógrafo de córnea tradicional, 9 LEDs (Light Emitting Diodes) foram adaptados no anteparo cônico para que o paciente voluntário pudesse fixar o olhar em diferentes direções. Para cada direção imagens de Plácido foram digitalizadas e processadas para formar, por meio de algoritmo envolvendo elementos sofisticados de computação gráfica, um mapa tridimensional completo da córnea toda. RESULTADOS: Resultados apresentados neste trabalho mostram que uma região de até 100% maior pode ser mapeada usando esta técnica, permitindo que o clínico mapeie até próximo ao limbo da córnea. São apresentados aqui os resultados para uma superfície esférica de calibração e também para uma córnea in vivo com alto grau de astigmatismo, mostrando a curvatura e elevação. CONCLUSÃO: Acredita-se que esta nova técnica pode propiciar a melhoria de alguns processos, como por exemplo: adaptação de lentes de contato, algoritmos para ablações costumizadas para hipermetropia, entre outros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: Estimar valores de referência e função de hierarquia de docentes em Saúde Coletiva do Brasil por meio de análise da distribuição do índice h. MÉTODOS: A partir do portal da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 934 docentes foram identificados em 2008, dos quais 819 foram analisados. O índice h de cada docente foi obtido na Web of Science mediante algoritmos de busca com controle para homonímias e alternativas de grafia de nome. Para cada região e para o Brasil como um todo ajustou-se função densidade de probabilidade exponencial aos parâmetros média e taxa de decréscimo por região. Foram identificadas medidas de posição e, com o complemento da função probabilidade acumulada, função de hierarquia entre autores conforme o índice h por região. RESULTADOS: Dos docentes, 29,8% não tinham qualquer registro de citação (h = 0). A média de h para o País foi 3,1, com maior média na região Sul (4,7). A mediana de h para o País foi 2,1, também com maior mediana na Sul (3,2). Para uma padronização de população de autores em cem, os primeiros colocados para o País devem ter h = 16; na estratificação por região, a primeira posição demanda valores mais altos no Nordeste, Sudeste e Sul, sendo nesta última h = 24. CONCLUSÕES: Avaliados pelos índices h da Web of Science, a maioria dos autores em Saúde Coletiva não supera h = 5. Há diferenças entres as regiões, com melhor desempenho para a Sul e valores semelhantes entre Sudeste e Nordeste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as the local influence, total local influence of an individual, local influence on predictions and generalized leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates. The relevance of the approach was illustrated with a real data set, where it is shown that, by removing the most influential observations, the decision about which model best fits the data is changed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this manuscript is to discuss the existing barriers for the dissemination of medical guidelines, and to present strategies that facilitate the adaptation of the recommendations into clinical practice. The literature shows that it usually takes several years until new scientific evidence is adopted in current practice, even when there is obvious impact in patients' morbidity and mortality. There are some examples where more than thirty years have elapsed since the first case reports about the use of a effective therapy were published until its utilization became routine. That is the case of fibrinolysis for the treatment of acute myocardial infarction. Some of the main barriers for the implementation of new recommendations are: the lack of knowledge of a new guideline, personal resistance to changes, uncertainty about the efficacy of the proposed recommendation, fear of potential side-effects, difficulties in remembering the recommendations, inexistence of institutional policies reinforcing the recommendation and even economical restrains. In order to overcome these barriers a strategy that involves a program with multiple tools is always the best. That must include the implementation of easy-to-use algorithms, continuous medical education materials and lectures, electronic or paper alerts, tools to facilitate evaluation and prescription, and periodic audits to show results to the practitioners involved in the process. It is also fundamental that the medical societies involved with the specific medical issue support the program for its scientific and ethical soundness. The creation of multidisciplinary committees in each institution and the inclusion of opinion leaders that have pro-active and lasting attitudes are the key-points for the program's success. In this manuscript we use as an example the implementation of a guideline for venous thromboembolism prophylaxis, but the concepts described here can be easily applied to any other guideline. Therefore, these concepts could be very useful for institutions and services that aim at quality improvement of patient care. Changes in current medical practice recommended by guidelines may take some time. However, if there is a broader participation of opinion leaders and the use of several tools listed here, they surely have a greater probability of reaching the main objectives: improvement in provided medical care and patient safety.