42 resultados para Lithium Samples


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human papillomavirus is a DNA virus that includes 118 genotypes. HPV16 is responsible for 80% of cervical cancer in women. Men are important reservoirs and major transmitters of HPV to their partners. The aim of this study was to detect HPV DNA and to determine the prevalence of HPV types 6, 11, 16, and 18 in urine samples of men infected with HIV-1. This study included 223 patients infected with HIV-1 from the Center of Reference on HIV/AIDS (CRT-SP) and an outpatient clinic of HIV. Urine samples were collected and after DNA extraction real-time PCR was performed for detection of HPV DNA. Positive samples were then tested by conventional PCR using type-specific primers for the four HPV types. A total of 223 men infected with HIV-1 were tested, 81% of whom were on HAART. Four (5.8%) were positive for HPV6, 18 (26.1%) were positive for HPV11, 22 (31.9%) were positive for HPV16 and five (7.2%) were positive for HPV18 by conventional PCR. Twenty (29%) patients had other HPV types and five patients (1.5%) had multiple types. The mean T CD4+cells count was 517 and 441 cells/mm(3) (P=0.30), in HPV negative and positive men, respectively. The HIV viral load was higher in the HPV negative group than for in the men with HPV (P=0.0002). A 30.9% prevalence of HPV was found in asymptomatic urine samples of men infected with HIV-1. This study suggests that urine may be a useful specimen for HPV screening. J. Med. Virol 81:2007-2011, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport coefficients have been measured as a function of the concentration of sulfur dioxide, SO(2), dissolved in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)-imide, [BMMI][Tf(2)N], as well as in its lithium salt solution, Li[Tf(2)N]. The SO(2) reduces viscosity and density and increases conductivity and diffusion coefficients in both the neat [BMMI] [Tf(2)N] and the [BMMI][Tf(2)N]-Li[Tf(2)N] solution. The conductivity enhancement is not assigned to a simple viscosity effect; the weakening of ionic interactions upon SO(2) addition also plays a role. Microscopic details of the SO(2) effect were unraveled using Raman spectroscopy and molecular dynamics (MD) simulations. The Raman spectra suggest that the Li(+)-[Tf(2)N] interaction is barely affected by SO(2), and the SO(2)-[Tf(2)N] interaction is weaker than previously observed in an investigation of an ionic liquid containing the bromide anion. Transport coefficients calculated by MD simulations show the same trend as the experimental data with respect to SO(2) content. The MD simulations provide structural information on SO(2) molecules around [Tf(2)N], in particular the interaction of the sulfur atom of SO(2) with oxygen and fluorine atoms of the anion. The SO(2)-[BMMI] interaction is also important because the [BMMI] cations with above-average mobility have a larger number of nearest-neighbor SO(2) molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layer-by-layer (LbL) films from K(2)Nb(6)O(17)(2-) and polyallylamine (PAH) and dip-coating films of H(2)K(2)Nb(6)O(17) were prepared on a fluorine-doped tin-oxide (FTO)-coated glass. The atomic force microscopy (AFM) images were carried out for morphological characterization of both materials. The real surface area and the roughness factor were determined on the basis of pseudocapacitive processes involved in the electroreduction/electrooxidation of gold layers deposited on these films. Next, lithium ion insertion into these materials was examined by means of electrochemical and spectroelectrochemical measurements. More specifically, cyclic voltammetry and current pulses under visible light beams were used to investigate mass transport and chromogenic properties. The lithium ion diffusion coefficient (D(Li)) within the LbL matrix is significantly higher than that within the dip-coating film, ensuring high storage capacity of lithium ions in the self-assembled electrode. Contrary to the LbL film, the potentiodynamic profile of absorbance change (Delta A) as a function of time is not similar to that obtained in the case of current density for the dip-coating film. Aiming at analyzing the rate of the coloration front associated with lithium ion diffusion, a spectroelectrochemical method based on the galvanostatic intermittent titration technique (GITT) was employed so as to determine the ""optical"" diffusion coefficient (D(op)). In the dip-coating film, the method employed here revealed that the lithium ion rate is higher in diffusion pathways formed from K(2)Nb(6)O(17)(2-) sites that contribute more significantly to Delta A. Meanwhile, the presence of PAH contributed to the increased ionic mobility in diffusion pathways in the LbL film, with low contribution to the electrochromic efficiency. These results aided a better understanding of the potentiodynamic profile of the temporal change of absorbance and current density during the insertion/deinsertion of lithium ions into the electrochromic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium ""butylchalcogenolates are generated in situ by reacting the elements (S, Se, and Te) with (n)butyl-lithium at 0 degrees C. Reaction of the lithium alkylchalcogenolates with activated alkenes and aldehydes gives the corresponding aldol adducts. The selenium-containing products give Morita-Baylis-Hillman adducts after the oxidation/elimination of the selenoxide. The whole sequence can be performed in a one-pot procedure. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of a sequential injection method to automate the fluorimetric determination of glyphosate based on a first step of oxidation to glycine by hypochlorite at 48 degrees C, followed by reaction with the fluorogenic reagent o-phthaldialdehyde in presence of 2-mercaptoethanol in borate buffer (pH > 9) to produce a fluorescent 1-(2`-hydroxyethylthio)-2-N-alkylisoindole. The proposed method has a linear response for glyphosate concentrations between 0.25 and 25.0 mu mol L(-1), with limits of detection and quantification of 0.08 and 0.25 mu mol L(-1), respectively. The sampling rate of the method is 18 samples per hour, consuming only a fraction of reagents consumed by the chromatographic method based on the same chemistry. The method was applied to study adsorption/desorption properties in a soil and in a sediment sample. Adsorption and desorption isotherms were properly fitted by Freundlich and Langmuir equations, leading to adsorption capacities of 1384 +/- 26 and 295 +/- 30 mg kg(-1) for the soil and sediment samples, respectively. These values are consistent with the literature, with the larger adsorption capacity of the soil being explained by its larger content of clay minerals, while the sediment was predominantly sandy. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of benzoate and sorbate ions in commercial beverages. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. As the high resolution obtained experimentally for sorbate and benzoate in the studies presented in the literature is not in agreement with that expected from the ionic mobility values published, a procedure to determine these values was carried out. The salicylate ion was used as the internal standard. The background electrolyte was composed of 25 mmol L(-1) tris(hydroxymethyl)aminomethane and 12.5 mmol L(-1) 2-hydroxyisobutyric acid, atpH 8.1.Separation was conducted in a fused-silica capillary(32 cm total length and 8.5 cm effective length, 50 mu m I.D.), with short-end injection configuration and direct UV detection at 200 nm for benzoate and salicylate and 254 nm for sorbate ions. The run time was only 28 s. A few figures of merit of the proposed method include: good linearity (R(2) > 0.999), limit of detection of 0.9 and 0.3 mg L(-1) for benzoate and sorbate, respectively, inter-day precision better than 2.7% (n =9) and recovery in the range 97.9-105%. Beverage samples were prepared by simple dilution with deionized water (1:11, v/v). Concentrations in the range of 197-401 mg L(-1) for benzoate and 28-144 mg L(-1) for sorbate were found in soft drinks and tea. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented for spectrophotometric determination of total polyphenols content in wine. The procedure is a modified CUPRAC method based on the reduction of Cu(II), in hydroethanolic medium (pH 7.0) in the presence of neocuproine (2,9-dimethyl-1,10-phenanthroline), by polyphenols, yielding a Cu(I) complexes with maximum absorption peak at 450 nm. The absorbance values are linear (r = 0.998, n = 6) with tannic acid concentrations from 0.4 to 3.6 mu mol L(-1). The limit of detection obtained was 0.41 mu mol L(-1) and relative standard deviation 1.2% (1 mu mol L(-1); n = 8). Recoveries between 80% and 110% (mean value of 95%) were calculated for total polyphenols determination in 14 commercials and 2 synthetic wine samples (with and without sulphite). The proposed procedure is about 1.5 more sensitive than the official Folin-Ciocalteu method. The sensitivities of both methods were compared by the analytical responses of several polyphenols tested in each method. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, fast, accurate, and sensitive spectrophotometric method was developed to determine zinc(II). This method is based on the reaction of Zn(II) with di-2-pyridyl ketone benzoylhydrazone (DPKBH), at pH=5.5 and 50% (v/v) ethanol. Beers law was obeyed in the range 0.020-1.82 mu g mL(-1) with a molar apsorptivity of 3.64 x 10(4) L mol(-1) cm(-1), and a detection limit (3) of 2.29 mu g L-1. The action of some interfering ions was verified and the developed method applied to pharmaceutical and biological samples. The results were then compared with those obtained by using a flame atomic absorption technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acylation of three cellulose samples by acetic anhydride, Ac(2)O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 A degrees C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac(2)O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac(2)O/AGU = 3. For all celluloses, the dependence of DS on Ac(2)O/AGU is described by an exponential decay equation: DS = DS(o) - Ae(-[(Ac2O/AGU)/B]); (A) and (B) are regression coefficients, and DS(o) is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B((M-cotton)) > B((M-sisal)) > B((MCC)); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, N(agg), of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 N(agg). To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac(2)O/AGU, time, temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.