117 resultados para KOOP HARDNESS
Resumo:
The aim of this study was to evaluate the degree of conversion and hardness of a dental composite resin Filtek (TM) Z-350 (3M ESPE, Dental Products St. Paul, MN) photo-activated for 20 s of irradiation time with two different light guide tips, metal and polymer, coupled on blue LED Ultraled LCU (Dabi Atlante, SP, Brazil). With the metal light tip, power density was of 352 and with the polymer was of 456 mW/cm(2), respectively. Five samples (4 mm in diameter and 2mm in thickness-ISO 4049), were made for each Group evaluated. The measurements for DC (%) were made in a Nexus-470 FT-IR, Thermo Nicolet, E.U.A. Spectroscopy (FTIR). Spectra for both uncured and cured samples were analyzed using an accessory of reflectance diffuse. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300-4000 cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm(-1)) against internal standard before and after curing of the sample: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements (top and bottom surfaces) were performed in a universal testing machine (Buehler MMT-3 digital microhardness tester Lake Bluff, Illinois USA). A 50 gf load was used and the indenter with a dwell time of 30 s. The data were submitted to the test t Student at significance level of 5%. The mean values of degree of conversion for the polymer and metal light guide tip no were statistically different (p = 0.8389). The hardness mean values were no statistically significant different among the light guide tips (p = 0.6244), however, there was difference between top and bottom surfaces (p < 0.001). The results show that so much the polymer light tip as the metal light tip can be used for the photo-activation, probably for the low quality of the light guide tip metal.
Resumo:
For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the superficial microhardness of enamel in teeth at different posteruptive ages (before eruption in the oral cavity, 2-3 years after eruption, 4-10 years after eruption and more than 10 years after eruption). The study sample was composed of 134 specimens of human enamel. One fragment of each tooth was obtained from the flattest central portion of the crown to produce specimens with 3 x 3 mm. The enamel blocks were minimally flattened out and polished in order to obtain a flat surface parallel to the base, which is fundamental for microhardness testing. Microhardness was measured with a microhardness tester and a Knoop diamond indenter, under a static load of 25 g applied for 5 seconds. Comparison between the superficial microhardness obtained for the different groups was performed by analysis of Student's t test. The results demonstrated that superficial microhardness values have a tendency to increase over the years, with statistically significant difference only between unerupted enamel and that with more than 10 years after eruption. According to the present conditions and methodology, it was concluded that there were differences between the superficial micro-hardness of specimens at different eruptive ages, revealing an increasing mineralization. However, this difference was significant only between unerupted specimens and those with more than 10 years after eruption.
Resumo:
This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)- 100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.
Resumo:
OBJECTIVES: To evaluate the color stability and hardness of two denture liners obtained by direct and indirect techniques, after thermal cycling and immersion in beverages that can cause staining of teeth. MATERIAL AND METHODS: Seventy disc-shaped specimens (18 x 3 mm) processed by direct (DT) and indirect techniques (IT) were made from Elite soft (n=35) and Kooliner (n=35) denture liners. For each material and technique, 10 specimens were subjected to thermal cycling (3,000 cycles) and 25 specimens were stored in water, coffee, tea, soda and red wine for 36 days. The values of color change, Shore A hardness (Elite soft) and Knoop hardness (Kooliner) were obtained. The data were subjected to ANOVA, Tukey's multiple-comparison test, and Kruskal-Wallis test (P<0.05). RESULTS: The thermal cycling promoted a decrease on hardness of Kooliner regardless of the technique used (Initial: 9.09± 1.61; Thermal cycling: 7.77± 1.47) and promoted an increase in the hardness in the DT for Elite Soft (Initial: 40.63± 1.07; Thermal cycling: 43.53± 1.03); hardness of Kooliner (DT: 8.76± 0.95; IT: 7.70± 1.62) and Elite Soft (DT: 42.75± 1.54; IT=39.30± 2.31) from the DT suffered an increase after the immersion in the beverages. The thermal cycling promoted color change only for Kooliner in the IT. Immersion in the beverages did not promote color change for Elite in both techniques. The control group of the DT of Kooliner showed a significant color change. Wine and coffee produced the greatest color change in the DT only for Elite Soft when compared to the other beverages. CONCLUSION: The three variation factors promoted alteration on hardness and color of the tested denture lining materials.
Resumo:
The present study evaluated the effect of repeated simulated microwave disinfection on physical and mechanical properties of Clássico, Onda-Cryl and QC-20 denture base acrylic resins. Aluminum patterns were included in metallic or plastic flasks with dental stone following the traditional packing method. The powder/liquid mixing ratio was established according to the manufacturer's instructions. After water-bath polymerization at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling and finished. Each specimen was immersed in 150 mL of distilled water and underwent 5 disinfection cycles in a microwave oven set at 650 W for 3 min. Non-disinfected and disinfected specimens were subjected to the following tets: Knoop hardness test was performed with 25 g load for 10 s, impact strength test was done using the Charpy system with 40 kpcm, and 3-point bending test (flexural strength) was performed at a crosshead speed of 0.5 mm/min until fracture. Data were analyzed statistically by ANOVA and Tukey's test (α= 0.05%). Repeated simulated microwave disinfections decreased the Knoop hardness of Clássico and Onda-Cryl resins and had no effect on the impact strength of QC-20. The flexural strength was similar for all tested resins.
Resumo:
Owing to improvements in its mechanical properties and to the availability of shade and translucence resources, resin composite has become one of the most widely used restorative materials in present day Dentistry. The aim of this study was to assess the relation between the surface hardness of seven different commercial brands of resin composites (Charisma, Fill Magic, Master Fill, Natural Look, Opallis, Tetric Ceram, and Z250) and the different degrees of translucence (translucid, enamel and dentin). Vickers microhardness testing revealed significant differences among the groups. Z250 was the commercial brand that showed the best performance in the hardness test. When comparing the three groups assessed within the same brand, only Master Fill and Fill Magic presented statistically significant differences among all of the different translucencies. Natural Look was the only one that showed no significant difference among any of the three groups. Charisma, Opallis, Tetric Ceram and Z250 showed significant differences among some of the tested groups. Based on the results found in this study, it was not possible to establish a relation between translucence and the microhardness of the resin composites assessed. Depending on the material assessed, however, translucence variation did affect the microhardness values of the resin composites.
Resumo:
Composite resins might be susceptible to degradation and staining when in contact with some foods and drinks. This study evaluated color alteration and changes in microhardness of a microhybrid composite after immersion in different colored foods and determined whether there was a correlation between these two variables. Eighty composite disks were randomly divided into 8 experimental groups (n = 10): kept dry; deionized water; orange juice; passion fruit juice; grape juice; ketchup; mustard and soy sauce. The disks were individually immersed in their respective test substance at 37 ºC, for a period of 28 days. Superficial analysis of the disk specimens was performed by taking microhardness measurements (Vickers, 50 g load for 45 seconds) and color alterations were determined with a spectrophotometer (CINTRA 10- using a CIEL*a*b* system, 400-700 nm wavelength, illuminant d65 and standard observer of 2º) at the following times: baseline (before immersion), 1, 7, 14, 21 and 28 days. Results were analyzed by ANOVA and Tukey's test (p < 0.05). Both variables were also submitted to Pearson's correlation test (p < 0.05). The passion fruit group underwent the greatest microhardness change, while the mustard group suffered the greatest color alteration. Significant positive correlation was found between the two variables for the groups deionized water, grape juice, soy sauce and ketchup. Not all color alteration could be associated with surface degradation.
Resumo:
With the increase in life expectancy, biomaterials have become an increasingly important focus of research because they are used to replace parts and functions of the human body, thus contributing to improved quality of life. In the development of new biomaterials, the Ti-15Mo alloy is particularly significant. In this study, the Ti-15Mo alloy was produced using an arc-melting furnace and then characterized by density, X-ray diffraction, optical microscopy, hardness and dynamic elasticity modulus measurements, and cytotoxicity tests. The microstructure was obtained with β predominance. Microhardness, elasticity modulus, and cytotoxicity testing results showed that this material has great potential for use as biomaterial, mainly in orthopedic applications.
Resumo:
The objective of this work was to evaluate biaxial-flexural-strength (σf), Vickers hardness (HV), fracture toughness (K Ic), Young's modulus (E), Poisson's ratio (ν) and porosity (P) of two commercial glass-ceramics, Empress (E1) and Empress 2 (E2), as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.
Resumo:
The aim of this study was to evaluate the anticaries potential of 500 or 1100 ppm F dentifrices combined with fluoride varnish using a pH-cycling regimen. Seventy primary canines were covered with nail polish, leaving a 4×4 mm window on their buccal surface, and randomly assigned into 7 groups (n = 10): S: sound enamel not submitted to the pH-cycling regimen or treatment; N: negative control, submitted to the pH-cycling regimen without any treatment; D1 and D2: subjected to the pH-cycling regimen and treated twice daily with 1100 or 500 ppm F dentifrice, respectively; VF: fluoride varnish (subjected to F-varnish before and in the middle of the pH-cycling regimen); and VF+D1 and VF+D2. After 10 days, the teeth were sectioned, and enamel demineralization was assessed by cross-sectional hardness at different distances from the dental surface. Data were analyzed using a two-way ANOVA followed by Tukey's test. Dentifrice with 1100 ppm F and the combination of F-varnish with the dentifrices significantly reduced enamel demineralization compared with the negative control (p < 0.05), but the isolated effects of F-varnish and dentifrice with low concentration were not significant (p > 0.05). The effect of combining F-varnish with the dentifrices was not greater than the effect of the dentifrices alone (p < 0.05). The data suggest that the combination of F-varnish with dentifrices containing 500 and 1100 ppm F is not more effective in reducing demineralization in primary teeth than the isolated effect of dentifrice containing 1100 ppm F.
Resumo:
Effective incorporation of a probiotic into foods requires the culture to remain viable all along processing and storage, without adverse alterations to sensory characteristics. The objective of this work was developing Minas-type fresh cheese with probiotic properties from buffalo milk. Four batches of Minas-type fresh cheese were prepared using buffalo milk: batch T1 in which neither culture nor lactic acid added; batch T3 in which only lactic acid added; batches T2 and T4 , both added of Lactobacillus acidophilus LAC 4, but T4 was also acidified. Resulting cheeses were evaluated for probiotic culture stability, texture profile, sensory acceptance, and changes in pH. The T4 probiotic cheese presented hardness, gumminess, and chewiness significantly lower than the other treatments. However, values for springiness and cohesiveness did not differ between all cheeses, and no sensory differences (p > 0.05) were found between treatments for texture, taste, and overall acceptance. The addition of probiotic to the acidified cheese (T4) yielded best aroma. The populations of L. acidophilus were greater than 10(6) CFU g-1 after 28 days of storage all products. Minas-type fresh cheese from buffalo milk is a suitable food for the delivery of L. acidophilus, since the culture remained viable during the shelf life of the products and did not negative affect analysed parameters.
Resumo:
Neste trabalho são investigadas as propriedades mecânicas de poliuretana derivada do óleo de mamona, utilizando a técnica de indentação instrumentada com penetradores de geometrias piramidal e esférica. Foi analisada a influência da forma do penetrador utilizado nos ensaios de indentação instrumentada para se obter valores das propriedades mecânicas de polímero derivado de óleo de mamona. Os penetradores utilizados são de pontas piramidais dos tipos Berkovich e canto de cubo e esférico de raio igual a 150 μm em um Nanoindenter XP TM com cargas aplicadas entre 1 e 200 mN. As penetrações variam de acordo com o formato do penetrador, sendo maiores para pontas agudas. A dureza e o módulo de elasticidade foram determinados, utilizando o método de Oliver e Pharr. Verificou-se que os valores medidos para a dureza são maiores para penetradores mais agudos. Os valores obtidos com a ponta piramidal Berkovich foram de 0,14 GPa para pequenas penetrações e 0,12 GPa para maiores penetrações. Já os valores obtidos com ponta canto de cubo foram 25 a 30% maiores. Isso está relacionado com os volumes das regiões que apresentam deformações plásticas elevadas, no caso de penetradores agudos comparados com os volumes das regiões que sofrem deformações viscoelásticas. A viscosidade aparente determinada, utilizando penetrador esférico em testes de força aplicada constante, é igual a (22 ± 2) × 10(12) Pa.s.
Resumo:
Neste trabalho estudou-se o desempenho mecânico e térmico de compostos de borracha natural (Hevea brasiliensis) de 4 diferentes clones (GT 1, IAN 873, PB 235 e RRIM 600) cultivados no Estado de São Paulo, assim como de uma mistura destes clones e de uma borracha comercial, GEB-1. Estas borrachas foram formuladas e vulcanizadas com tempos de 5, 7 e 9 minutos. A caracterização foi realizada por calorimetria exploratória diferencial, termogravimetria, ensaios de resistência à tração, análise dinâmico-mecânica, medidas de dureza Shore A, microscopia eletrônica de varredura e espectroscopia na região do infravermelho. Os resultados permitiram concluir que o tempo de vulcanização e o tipo de clone não influenciaram na temperatura de transição vítrea (Tg) dos compostos. Os valores de Tg obtidos por DMA foram de cerca de -62 °C, e os resultados ensaios de dureza apresentaram valores próximos de 60 para todos os compostos estudados. Os ensaios de resistência à tração mostraram que o melhor desempenho mecânico foi obtido pelo clone RRIM 600. De acordo com os resultados obtidos neste trabalho, todos os clones atingiram as propriedades reportadas na literatura, podendo ser utilizados, em princípio, nas indústrias de artefatos de borracha separadamente ou na forma de mistura.
Resumo:
The aim of this study was to evaluate the degree of conversion by Knoop microhardness (KHN) and FT-Raman spectroscopy (FTIR) of one nanofilled (Filtek Supreme-3M-ESPE [FS]) and one microhybrid composite (Charisma-Heraeus-Kulzer [CH]), each with different opacities, namely enamel, dentin, and translucent, which were photo-activated by a quartz-tungsten-halogen lamp (QTH) and a light-emitting diode (LED). Resin was bulk inserted into a disc-shaped mold that was 2.0 mm thick and 4 mm in diameter, obtaining 10 samples per group. KHN and FTIR values were analyzed by two-way ANOVA and Tukey's tests (α = 0.05). Nanofilled resin activated by a LED presented higher microhardness values than samples activated by a QTH for dentin opacity (p < 0.05). The microhybrid resin showed no differences in KHN or FTIR values with different activation sources or opacity. The nanofilled dentin and enamel resins showed lower FTIR values than the translucent resin. The KHN values of the translucent resins were not influenced by the light source.