31 resultados para Intratracheal intubation
Resumo:
Experimental models of infection are good tools for establishing immunological parameters that have an effect on the host-pathogen relationship and also for designing new vaccines and immune therapies. In this work, we evaluated the evolution of experimental tuberculosis in mice infected with increasing bacterial doses or via distinct routes. We showed that mice infected with low bacterial doses by the intratracheal route were able to develop a progressive infection that was proportional to the inoculum size. In the initial phase of disease, mice developed a specific Th1-driven immune response independent of inoculum concentration. However, in the late phase, mice infected with higher concentrations exhibited a mixed Th1/Th2 response, while mice infected with lower concentrations sustained the Th1 pattern. Significant IL-10 concentrations and a more preeminent T regulatory cell recruitment were also detected at 70 days post-infection with high bacterial doses. These results suggest that mice infected with higher concentrations of bacilli developed an immune response similar to the pattern described for human tuberculosis wherein patients with progressive tuberculosis exhibit a down modulation of IFN-gamma production accompanied by increased levels of IL-4. Thus, these data indicate that the experimental model is important in evaluating the protective efficacy of new vaccines and therapies against tuberculosis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Pulmonary macrophages (PM), which are CD11b/CD18(+) and CD23(+), may be involved in the onset of inflammatory events caused by Paracoccidioides brasiliensis in the lungs. In the present study, we measured the nitric oxide (NO) and interleukin in PM production after intratracheal (i.t.) inoculation of an enriched beta-glucan cell wall fraction from P. brasiliensis (Fraction F1). BALB/c and C57/BL6 (B6) mice were i.t. treated with Fraction F1, and their PM were restimulated in vitro with LPS and interferon-gamma up to 14 days after treatment. Macrophages BALB/c mice produced less NO than PM from B6 mice. The lower NO production was caused by higher production of TGF-beta by pulmonary macrophages of BALB/c and was abrogated by anti-TGF-beta MoAb in vitro and in vivo. Other interleukins such as IL-10, IL-4 and a combination of IL-1, TNF-alpha and IL-6 were not involved in NO production induced by Fraction F1. Expression of CD11b increases and expression of CD23 decreases on PM of BALB/c mice after in vivo treatment whereas PM of B6 mice do not show a variation of their phenotype. Moreover, the ability of pulmonary macrophages to induce lymphocyte proliferation was reduced in mixed cultures of CD11b(+) or CD23(+) macrophages but was restored when lymphocytes were cultivated in the presence of NO inhibitor (L-NMMA). Thus, the results presented herein indicate that in BALB/c but not in B6 mice TGF- is strongly induced by Fraction 1 in PM in vivo and suppresses NO production. Low NO production by PM is associated with a change in CD11b/CD23 expression and with a high lymphocyte proliferative response. Thus, CD11b(+)/CD23(+) PM modulate NO and TGF-beta production in the pulmonary microenvironment.
Resumo:
Background. Approximately 20% of urinary tract fistulas after renal allografting are complicated by urinary tract infection, which presents a therapeutic challenge. Objective. To evaluate an option for treatment of urinary tract fistulas associated with urinary tract infection and unsuitable for minimally invasive or primary surgical urinary tract repair. Patients and Methods. The study included 650 recipients who underwent transplantation over 17 years. Urinary leakage was initially treated with indwelling bladder catheterization. Patients with fistulas refractory to treatment underwent surgical intervention to repair the urinary tract. In patients who were not candidates for primary repair of the urinary tract, temporary urinary diversion was performed, rather than classic percutaneous or open nephrostomy, using a ureteral stent (ie, a 6F or 8F Foley catheter with the balloon placed inside the renal pelvis). Results. Overall, urinary leakage occurred in 36 patients (5.5%). Conservative management was successful in 14 vesical fistulas (42.4%) and no ureteral fistulas (0%). Three patients died of sepsis during conservative treatment, before the new surgical approach. Five of 36 urinary leaks (13.9%) were managed using ureteral intubation with an 8F Foley catheter, with a success rate of 80%. Conclusion. Ureteral catheterization with an 8F Foley catheter is a feasible therapeutic option to treat complicated urinary tract fistulas unsuitable for primary surgical repair of the urinary tract.
Resumo:
OBJECTIVE. To evaluate the effect of oral hygiene with 0.12% chlorhexidine gluconate on the incidence of nosocomial pneumonia and ventilator-associated pneumonia (VAP) in children undergoing cardiac surgery. DESIGN. Prospective, randomized, double-blind, placebo-controlled trial. SETTING. Pediatric intensive care unit (PICU) at a tertiary care hospital. patients. One hundred sixty children undergoing surgery for congenital heart disease, randomized into 2 groups: chlorhexidine (n = 87) and control (n = 73). INTERVENTIONS. Oral hygiene with 0.12% chlorhexidine gluconate or placebo preoperatively and twice a day postoperatively until PICU discharge or death. RESULTS. Patients in experimental and control groups had similar ages (median, 12.2 vs 10.8 months; P =. 72) and risk adjustment for congenital heart surgery 1 score distribution (66% in category 1 or 2 in both groups; P =. 17). The incidence of nosocomial pneumonia was 29.8% versus 24.6% (Pp. 46) and the incidence of VAP was 18.3% versus 15% (Pp. 57) in the chlorhexidine and the control group, respectively. There was no difference in intubation time (P =. 34), need for reintubation (P =. 37), time interval between hospitalization and nosocomial pneumonia diagnosis (P =. 63), time interval between surgery and nosocomial pneumonia diagnosis (P =. 10), and time on antibiotics (P =. 77) and vasoactive drugs (P =. 16) between groups. Median length of PICU stay (3 vs 4 days; P =. 53), median length of hospital stay (12 vs 11 days; P =. 67), and 28-day mortality (5.7% vs 6.8%; P =. 77) were also similar in the chlorhexidine and the control group. CONCLUSIONS. Oral hygiene with 0.12% chlorhexidine gluconate did not reduce the incidence of nosocomial pneumonia and VAP in children undergoing cardiac surgery.
Resumo:
Objective: To evaluate oral feeding capacity, the swallowing process, and risk for aspiration, both clinically and during fiberoptic endoscopic evaluation of swallowing, in infants with isolated Robin sequence treated exclusively with nasopharyngeal intubation and feeding facilitating techniques. Design: Longitudinal and prospective study. Setting: Hospital de Reabilitacao de Anomalies Craniofaciais, University of Sao Paulo, Bauru, Brazil. Patients: Eleven infants with isolated Robin sequence, under 2 months of age, treated with nasopharyngeal intubation. Interventions: Feeding facilitating techniques were applied in all infants throughout the study period. The infants were evaluated clinically and through fiberoptic endoscopic evaluation of swallowing at first, second, and, if necessary, third week of hospitalization (T1, T2, T3). The mean volume of ingested milk was registered during clinical evaluation, and events were registered during feeding. Results: The respiratory status of all infants was improved after nasopharyngeal intubation; 72% of them presented risk for aspiration during fiberoptic endoscopic evaluation of swallowing at T1. This risk was less frequent when thickened milk was given to the infants and at subsequent evaluations (T2 and T3). Conclusions: Nasopharyngeal intubation aids in stabilizing the airway in isolated Robin sequence, but it does not relate directly to feeding. The risk for aspiration was present in most of the infants, mainly during the first week of hospitalization, and improved within a few weeks, after the use of feeding facilitating techniques.
Resumo:
Positive end-expiratory pressure (PEEP) and sustained inspiratory insufflations (SI) during acute lung injury (ALI) are suggested to improve oxygenation and respiratory mechanics. We aimed to investigate the hemodynamic effects of PEEP with and without alveolar recruiting maneuver in a mild ALI model induced by inhalation of hydrochloric acid. Thirty-two pigs were randomly allocated into four groups (Control-PEEP, Control-SI, ALI-PEEP and ALI-SI). ALI was induced by intratracheal instillation of hydrochloric acid. PEEP values were progressively increased and decreased from 5, 10, 15 and 20 cmH(2)O in all groups. Three SIs maneuvers of 30 cmH(2)O for 20 s were applied to the assignable groups between each PEEP level. Transesophageal echocardiography (TEE), global hemodynamics, oxygenation indexes and gastric tonometry were measured 5 min after the maneuvers had been concluded and at each established value of PEEP (5, 10, 15 and 20 cmH(2)O). The cardiac index, ejection fraction and end-diastolic volume of right ventricle were significantly (P < 0.001) decreased with PEEP in both Control and ALI groups. Left ventricle echocardiography showed a significant decrease in end-diastolic volume at 20 cmH(2)O of PEEP (P < 0.001). SIs did not exert any significant hemodynamic effects either early (after 5 min) or late (after 3 h). In a mild ALI model induced by inhalation of hydrochloric acid, significant hemodynamic impairment characterized by cardiac function deterioration occurred during PEEP increment, but SI, probably due to low applied values (30 cmH(2)O), did not exert further negative hemodynamic effects. PEEP should be used cautiously in ALI caused by acid gastric content inhalation.
Resumo:
Objective To assess the effect of halothane (H), isoflurane (I) or sevoflurane (S) on the bispectral index (BIS), and the effect of the addition of meperidine in dogs subjected to ovariohysterectomy. Study design Prospective, randomized, blinded, clinical trial. Animals Forty-eight female mixed-breed dogs, with weights varying from 10 to 25 kg. Methods All dogs were premedicated with acepromazine (A) (0.1 mg kg(-1) IM) or A and meperidine (M) (3 mg kg(-1) IM) and they were divided into six groups of eight animals (AH, AMH, AI, AMI, AS, and AMS). Fifteen minutes after premedication they were anesthetized with propofol (5 mg kg(-1) IV) and then orotracheally intubated. Anesthesia was maintained with halothane, isoflurane or sevoflurane, respectively. The BIS, E`(anest) variables were recorded at 15 minutes after administering pre-anesthetic medication (T0); 10 minutes of anesthesia maintenance (T1); right ovarian pedicle ligation (T2); muscle suturing (T3); skin suture (T4) and 10 minutes after terminating the inhalant anesthetic (T5), respectively. Results BIS values were decreased at all times when compared to the baseline values in all groups (p < 0.05). In the comparative assessment between groups, the values obtained at T0 and T1 were similar for all groups. At T2, the values in AMH were lower than those obtained in AI, AMI and AS (p < 0.05). At the same time significantly higher values were found for AI when compared to AMS (p < 0.01). There was a correlation between the bispectral index and the expired anesthetic fraction in all groups. Conclusions and clinical relevance Within groups given the same inhalant anesthetic the bispectral index was a good indicator for the degree of hypnosis in dogs, indicating a good correlation with the amount of anesthetic and the nociceptive stimulation. BIS was a less reliable indicator of relative anesthetic depth when comparing equipotent end-tidal concentrations between the three inhalants.
Resumo:
Objective To compare the quality of induction and recovery, degree of muscle relaxation, clinically apparent potency and cardiopulmonary effects of racemic ketamine or S(+)-ketamine when used for total intravenous anesthesia in horses. Study design Prospective randomized clinical trial Animals Sixteen healthy stallions (323 +/- 99 kg), with a mean age of 6.2 years, undergoing castration. Methods Horses were pre-medicated with romifidine IV, 15 minutes before induction of anesthesia. Each animal was then randomly allocated to receive either diazepam and ketamine (DK) or diazepam and S(+)-ketamine (DKS) at similar doses to induce anesthesia. For maintenance of anesthesia, 1/4 of the initial bolus of ketamine alone or S(+)-ketamine alone was administered, as required. Heart rate (HR), respiratory rate (RR) and systolic blood pressure were measured before and at 10-minute intervals during recumbency. Time from induction to lateral recumbency, time from induction to first additional dose, time from last additional dose to return to sternal posture and time from last additional dose to standing were recorded, and a subjective evaluation of quality of induction, endotracheal intubation, muscle relaxation and quality of recovery was recorded. Results The quality of the induction and duration of anesthesia were similar in both groups. HR, RR and systolic blood pressure were not significantly different between groups. Although some animals which received DKS showed some minor excitatory effects (25% of them) during the induction of anesthesia, these animals received 32% fewer doses for the maintenance of anesthesia and the recovery scores were better. Conclusions and clinical relevance S(+)-ketamine showed some advantages over racemic ketamine, such as less anesthetic agent being required and better overall recovery from anesthesia. Further studies are needed to obtain the optimum induction dose for the S(+)-ketamine.
Resumo:
The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.
Resumo:
Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Chemotherapy is the basis of treatment of paracoccidioidomycosis in its various forms. Depending on the Paracoccidioides brasiliensis virulence, the status of host immunity, the degree of tissue involvement and fungal dissemination, treatment can be extended for long periods with an alarming frequency of relapses. Association of chemotherapy with a vaccine to boost the cellular immune response seemed a relevant project not only to reduce the time of treatment but also to prevent relapses and improve the prognosis of anergic cases. The candidate immunogen is the gp43 major diagnostic antigen of P. brasiliensis and more specifically its derived peptide P10, carrying the CD4(+) T-cell epitope. Both gp43 and P10 protected Balb/c mice against intratracheal infections with virulent P. brasiliensis strain. P10 as single peptide or in a multiple-antigen-peptide (MAP) tetravalent construction was protective without adjuvant either by preimmunization and intratracheal challenge or as a therapeutic agent in mice with installed infection. P10 showed additive protective effects in drug-treated mice stimulating a Th-1 type immune response with high IFN-gamma and IL-12. P10 and few other peptides in the gp43 were selected by Tepitope algorithm and actually shown to promiscuously bind several prominent HLA-DR molecules suggesting that a peptide vaccine could be devised for a genetically heterogenous population. P10 was protective in animals turned anergic, was effective in a DNA minigene vaccine, and increased the protection by monoclonal antibodies in Balb/c mice. DNA vaccines and peptide vaccines are promising therapeutic tools to be explored in the control of systemic mycoses.
Resumo:
Paracoccidioidomycosis is a systemic granulomatous disease manifested in the acute/subacute or chronic forms. The anergic cases of the acute/subacute form are most severe, leading to death threatening conditions. Drug treatment is required to control the disease but the response in anergic patients is generally poor. A 15-mer peptide from the major diagnostic antigen gp43, named P10, induces a T-CD4(+) helper-1 immune response in mice of different haplotypes and protects against intratracheal challenge with virulent P. brasiliensis. Presently, P10 immunization and chemotherapy were associated in an attempt to improve antifungal treatment in Balb/c mice made anergic by adding dexamethasone to the drinking water. The combined drug/peptide treatment significantly reduced the lung CFUs in infected anergic mice, largely preserved lung alveolar structure and prevented fungal dissemination to liver and spleen. Results recommend that a P10-based vaccine should be associated to chemotherapy for improved treatment of paracoccidioidomycosis aiming especially at anergic cases. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development.
Resumo:
Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 mu g/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3`-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.